

NETS IN BANACH SPACES

Yuguang Xiao

M1 T.E.R.

Sorbonne Unversité

yuguang.xiao@etu.sorbonne-universite.fr

Encadrant: Alexandros Eskenazis

IMJ-PRG

Sorbonne Université

alexandros.eskenazis@imj-prg.fr

Abstract

This paper revisits and systematizes existing results concerning Gromov's question on the bi-Lipschitz equivalence of arbitrary nets in Euclidean spaces. We reproduce known proofs, offer a unified presentation, and highlight that in infinite-dimensional Banach spaces, the problem admits an affirmative solution.

Contents

\mathbf{A}	bstract	i
1	Introduction	1
2	Preliminaries	1
3	The case of \mathbb{R}^1	2
4	The case of \mathbb{R}^n , $n \ge 2$ 4.1 Construction of an (a,b) -net	6
5	The case of infinite-dimensional Banach spaces	20

1 Introduction

Definition 1 (separated net). If a, b > 0, an (a, b)-net or (a, b)-separated net in a normed space $(X, \|\cdot\|)$ is a subset $\mathcal{N} \subset X$ which is:

- a-separated, i.e. for every $u \neq v \in \mathcal{N}$, we have $||u v|| \geq a$;
- b-dense, i.e. for every $x \in X$ there exists $u \in \mathcal{N}$ such that $||x u|| \leq b$.

Definition 2 (Bi-Lipschitz mapping). A map $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is bi-Lipschitz if there is a constant K such that

$$\frac{1}{K} < \frac{\|\phi(x) - \phi(x')\|}{\|x - x'\|} < K \tag{1}$$

for $x \neq x'$, where $\|\cdot\|$ is the Euclidean norm.

Definition 3 (Bi-Lipschitz equivalent subsets). Two subsets $\mathcal{N}_1, \mathcal{N}_2$ of a normed space $(X, \|\cdot\|)$ are bi-Lipschitz equivalent if there exists a bi-Lipschitz and bijective map from \mathcal{N}_1 to \mathcal{N}_2 .

In his investigation of geometric properties of groups, Gromov posed a fundamental question [Gro93]: are any two nets in a given normed space X bi-Lipschitz equivalent? While this is clearly true in \mathbb{R} , Burago-Kleiner [BK98] and McMullen [McM98] independently showed that it fails in \mathbb{R}^n for $n \geq 2$. In contrast, Lindenstrauss, Matoušková, and Preiss [LKP00] found that in infinite-dimensional spaces, all nets are bi-Lipschitz equivalent, highlighting a key difference between finite and infinite dimensions. This project explores these results.

2 Preliminaries

First of all, we want to show that for two nets in \mathbb{R}^n , there exists a bijective map between them. We know that \mathbb{Z}^n is a $(1, \frac{\sqrt{n}}{2})$ -net in \mathbb{R}^n . It's enough to prove that there exist a bijective map from any net to \mathbb{Z}^n .

Theorem 1. Let \mathcal{N} be an (a,b)-net in \mathbb{R}^n . There exist a bijective map from \mathcal{N} to \mathbb{Z}^n .

Proof. Because \mathcal{N} has the property that any two distinct points lie at least distance a > 0 apart, \mathcal{N} is a uniformly discrete set. In a finite-dimensional Euclidean space \mathbb{R}^n , any such set is locally finite: each bounded region of \mathbb{R}^n can only contain finitely many points from \mathcal{N} . Indeed, if infinitely many points of \mathcal{N} lay in a bounded set, then by compactness they will have an accumulation point and this would contradict the uniform discreteness.

To see that \mathcal{N} is at most countable, cover \mathbb{R}^n by an ascending sequence of balls of radius $k = 1, 2, 3, \ldots$ around the origin,

$$\mathbb{R}^n = \bigcup_{k=1}^{\infty} B(0,k).$$

Since \mathcal{N} has only finitely many points in each B(0,k), we have

$$\mathcal{N} = \bigcup_{k=1}^{\infty} (\mathcal{N} \cap B(0,k)),$$

which is a countable union of finite sets, hence \mathcal{N} is at most countable. In fact, \mathcal{N} cannot be finite (because it must cover all of \mathbb{R}^n in radius b), so \mathcal{N} is countably infinite, as is \mathbb{Z}^n .

3 The case of \mathbb{R}^1

It is not difficult to prove that Gromov's question holds in \mathbb{R}^1 . Thanks to the preliminary section, we can know that there exist a bijection from (a,b)-net in \mathbb{R}^1 to \mathbb{Z}^1 . We can write an (a,b)-net in \mathbb{R}^1 in the form of a sequence $(Z_n)_{n\in\mathbb{Z}}$. And then, we rearrange $(Z_n)_{n\in\mathbb{Z}}$ in ascending order to obtain a strictly increasing sequence $(Y_n)_{n\in\mathbb{Z}}$. We can show that the mini-spacing will be determined by the distance between two adjacent points.

We suppose that the increasing sequence $(Y_n)_{n\in\mathbb{Z}}$ is an (a,b)-net in \mathbb{R}^1 .

Definition 4. The distance between two adjacent points of $(Y_n)_{n\in\mathbb{Z}}$, note $d_a(Y_n)$:

$$d_a(Y_n) = \{Y_{n+1} - Y_n : n \in \mathbb{N}\}\$$

Theorem 2. Let $(Y_n)_{n\in\mathbb{Z}}$ is a strictly increasing sequence, $(Y_n)_{n\in\mathbb{Z}}$ is a (a,b)-net in \mathbb{R}^1 , if and only if $\inf d_a(Y_n) \geq a$ and $\sup d_a(Y_n) \leq 2b$

Proof. • We prove \Longrightarrow :

- 1. Thanks to the propriety a-separated of (a, b)-net, we have $\inf d_a(Y_n) \geq a$.
- 2. For the second proof, we use the proof by contradiction, we suppose that $\sup d_a(Y_n) > 2b$. There exists $k \in \mathbb{N}$, such that $Y_{k+1} Y_k > 2b$. We pose a median point of the interval $[Y_k, Y_{k+1}]$, i.e: $x = \frac{Y_{k+1} + Y_k}{2} \in \mathbb{R}$, but $x Y_k > b$. There is a contradiction.
- We prove ⇐≕:
 - 1. If $\inf d_a(Y_n) \ge a$, for all m > k, $(m, k) \in \mathbb{Z} \times \mathbb{Z}$, we have $Y_m Y_k \ge (m k) \cdot \inf d_a(Y_n) = (m k) \cdot a \ge a$.

2.

Definition 5 (Neighbor of x in $(Y_n)_{n\in\mathbb{Z}}$). The neighbor of x in the sequence $(Y_n)_{n\in\mathbb{Z}}$ is the set of points in $(Y_n)_{n\in\mathbb{Z}}$ that are at the minimum distance from x. We denote this set by N_x , i.e.,

$$N_x = \{Y_k : k \in \mathbb{Z}, ||Y_k - x|| \le ||Y_m - x|| \text{ for all } m \ne k, m \in \mathbb{Z}\}.$$

 $\#(N_x) = 2$ if and only if x is a median point between $[Y_{k+1}, Y_k]$ for some k. Otherwise, $\#(N_x) = 1$

For every $x \in \mathbb{R}^1$, there exists $N \in N_x$, we have $||N - x|| \leq \frac{1}{2} \sup d_a(Y_n) = b$.

Let $(Y_n)_{n\in\mathbb{Z}}$ and $(\tilde{Y_n})_{n\in\mathbb{Z}}$ be two (a,b)-nets in \mathbb{R}^1 . We arrange Y_n along the horizontal axis and $\tilde{Y_n}$ along the vertical axis, forming a sequence of points $(Y_k, \tilde{Y_k})$ for $k \in \mathbb{Z}$. Looking at Figure 1, we then connect each adjacent pair of points with a simple line segment, thereby obtaining a piecewise linear map ϕ .

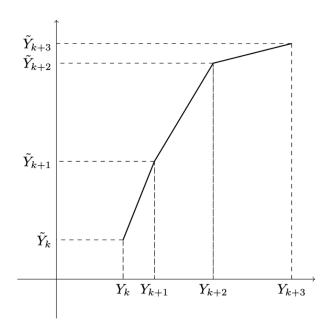


Figure 1: The simple map ϕ from $\{Y_n\}$ to $\{\tilde{Y_n}\}$

This map is necessarily bi-Lipschitz. By the preceding Theorem 2, we can easily find a constant $K = \frac{2b}{a}$, such that $\frac{1}{K} < \frac{\|\phi(x) - \phi(x')\|}{\|x - x'\|} < K$ for all $x \neq x' \in (Y_n)_{n \in \mathbb{Z}}$.

4 The case of \mathbb{R}^n , $n \geq 2$

In this chapter, we only consider the case $n \geq 2$.

4.1 Construction of an (a, b)-net

Theorem 3 (Rademacher Theorem). Let U be an open subset of \mathbb{R}^m and let $f: U \to \mathbb{R}^n$ be a Lipschitz map. Then f is differentiable almost everywhere.

Thanks to Rademacher Theorem, any bi-Lipschitz map have the Jacobian matrix. Let c be a strict positive constant, I=[0,1] and $\rho:I^2\to [1,1+c]$ be a measurable function which is not the Jacobian of any bi-Lipschitz map $f:I^2\to \mathbb{E}^2$ with

$$\operatorname{Jac}(f) := \det(Df) = \rho$$
 a.e.

Looking at Figure 2, we construct a sequence of disjoint square regions $\{S_k\}$ in \mathbb{R}^2 , each aligned with the coordinate axes, with integer vertices. Each square S_k has side length l_k with $\frac{l_k}{l_{k-1}} = k$ growing to infinity as $k \to \infty$. Choose a sequence of positive integers $m_k \in]1, \infty[$ such that:

$$m_k \to \infty$$
, $\frac{m_k}{l_k} \to 0$ as $k \to \infty$

(i.e, m_k grows slower than l_k).

Thus, l_k is much larger than m_k for large k. Let I = [0,1] and $\phi_k : I^2 \to S_k$ be the unique affine homeomorphism with scalar linear part because the side length of S_k is fixed. Then we define $\rho_k : S_k \to \left[\frac{1}{1+c}, 1\right]$ by $\left(\frac{1}{\rho}\right) \circ \phi_k^{-1}$. Subdivide S_k into m_k^2 sub-squares of side length $\frac{l_k}{m_k}$. Call this collection $\mathcal{T}_k = \{T_{ki}\}_{i=1}^{m_k^2}$. For each i in $\{1, \ldots, m_k^2\}$, subdivide T_{ki} into n_{ki}^2 sub-squares U_{kij} where n_{ki} is the integer part of $\sqrt{\int_{T_{ki}} \rho_k \ d\mathcal{L}}$ where \mathcal{L} is Lebesgue measure. Let $\{O_n\}$ be the collection of squares of side length 1 that partition $(\cup S_k)^c$, and construct a discrete set $\mathcal{N} \subset \mathbb{R}^2$ by placing one point at the center of each O_n and at the center of each U_{kij} .

Lemma 1. [BL98] \mathcal{N} is an (a,b)-net in \mathbb{R}^2 where a and b need to be determined.

Proof. • (a-separated)

We want to prove a-separated, (i.e, $\exists a \in \mathbb{R}_+$, $\inf_{u \neq v \in \mathcal{N}} ||u - v|| \geq a$). We partition \mathcal{N} into two subsets, A and B. Here, A consists of all points contained in U_{kij} , while B consists of all points contained in $\{O_n\}$. Therefore, we only need to consider three cases:

1. the infimum of the distance between any two points within A: First of all, we consider the points in T_{ki} for some $i \in \{1, 2, ...m_k^2\}$. There exists $a_1 = \frac{l_k}{2m_k n_{ki}}$ such that

$$\inf_{u \neq v \in T_{ki}} ||u - v|| \ge a_1 = \frac{l_k}{2m_k n_{ki}}$$

Then we have $n_{ki} \leq \lfloor \sqrt{\int_{T_{ki}} 1 d\mathcal{L}} \rfloor \leq \sqrt{Area(T_{ki})}$, since ρ_k is bounded by 1. For each $i \in \{1, 2, ... m_k^2\}$, $\sqrt{Area(T_{ki})} = \frac{l_k}{m_k}$. So we find $a_1 \geq \frac{l_k}{2m_k \sqrt{Area(T_{ki})}} = \frac{1}{2}$.

Secondly, we consider the points not in the same i of T_{ki} . We can easily find that $\frac{1}{2}$ is right for separation, because the point can not be at the boundary of T_{ki} for any i. The same thing in the different k.

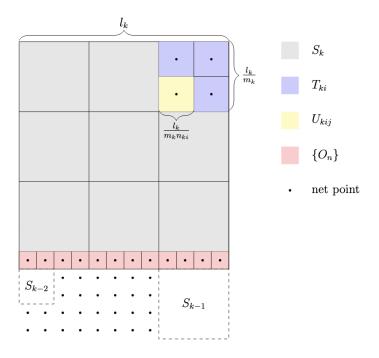


Figure 2: The sketch map of (a, b)-net \mathcal{N} we construct for k = 3

- 2. the infimum of the distance between any two points within B: Thanks to a sub-set of \mathbb{Z}^2 , $a_2 = 1$.
- 3. the infimum of the distance between any point in A and any point in B: We can easily find $a_3 = \frac{1}{2}$, because the point can not be at the boundary of S_k Conclusion: we finally find $a = min\{\frac{1}{2}, a_2, a_3\} = \frac{1}{2}$
- (b-dense)

By the definition, we want to find $b \in \mathbb{R}_+$: for any $x \in \mathbb{R}^2$, there exists $u \in \mathcal{N}$, such that $||x - u|| \le b$. In this part, we just consider two cases:

1. $x \in \bigcup S_k$:

We want to find the below boundary of n_{ki} .

$$n_{ki} = \lfloor \sqrt{\int_{T_{ki}} \rho_k d\mathcal{L}} \rfloor \ge \lfloor \sqrt{\int_{T_{ki}} \frac{1}{1+c} d\mathcal{L}} \rfloor = \lfloor \sqrt{\frac{1}{1+c} \cdot Area(T_{ki})} \rfloor$$
$$> \sqrt{\frac{1}{1+c}} \cdot \sqrt{Area(T_{ki})} - 1 = \sqrt{\frac{1}{1+c} \cdot \frac{l_k}{m_k}} - 1$$

Then the side length of U_{kij} is $\frac{l_k}{m_k n_{ki}}$ which is bounded above by $\frac{l_k}{m_k} \cdot \frac{1}{\sqrt{\frac{1}{1+c} \cdot \frac{l_k}{m_k} - 1}} = \frac{1}{\sqrt{\frac{1}{1+c} - \frac{m_k}{l_k}}}$. By the definition, $\frac{m_k}{l_k}$ can reach its boundary above. So there exists $C_1 \in \mathbb{R}_+$ such that $\frac{l_k}{m_k n_{ki}} < C_1$. We get $b_2 = \frac{\sqrt{2}}{2}C_1$.

2. $x \in \bigcup O_n$:

Thanks to B is a net in $\cup O_n$, like \mathbb{Z}^2 in \mathbb{R}^2 , we can easily find $b_2 = \frac{\sqrt{2}}{2}$ Conclusion: we finally find $b = max\{b_1, b_2\}$

4.2 Equivalent problem

Theorem 4. Let $\rho: I^2 \to [1, 1+c]$ be a measurable function which is not the Jacobian of any biLipschitz map $f: I^2 \to \mathbb{R}^2$ with

$$Jac(f) := \det(Df) = \rho$$
 a.e.

Then there is a net in \mathbb{R}^2 which is not biLipschitz equivalent to \mathbb{Z}^2 .

Proof. We now prove the theorem by contradiction. Suppose $g: \mathcal{N} \to \mathbb{Z}^2$ is an L-biLipschitz equivalence. Let $\mathcal{N}_k = \phi_k^{-1}(S_k \cap \mathcal{N}) \subset I^2$, and define $f_k: \mathcal{N}_k \to \mathbb{R}^2$ by

$$f_k(x) = \frac{1}{l_k} \left(g \circ \phi_k(x) - g \circ \phi_k(\star_k) \right)$$

where \star_k is some basepoint in \mathcal{N}_k . Then f_k is an L-biLipschitz map from \mathcal{N}_k to a subset of \mathbb{E}^2 , and the f_k 's are uniformly bounded. By the proof of the Arzelà-Ascoli theorem we may find a subsequence of the f_k 's which "converges uniformly" to some biLipschitz map $f: I^2 \to \mathbb{R}^2$.

By the construction of \mathcal{N} , the counting measure on \mathcal{N}_k (normalized by the factor $\frac{1}{l_k^2}$) converges weakly to $\frac{1}{\rho}$ times Lebesgue measure, while the (normalized) counting measure on $f_k(\mathcal{N}_k)$ converges weakly to Lebesgue measure. It follows that

$$f_*\left(\left(\frac{1}{\rho}\right)\mathcal{L}\right) = \mathcal{L}\big|_{f(I^2)}, \text{ i.e. } \operatorname{Jac}(f) = \rho.$$

Theorem 5. [McM98] For the following two statements, we have (A), so (B):

- (A) Every measurable f > 0 on \mathbb{R}^n with f and 1/f bounded can be realized as the Jacobian determinant of a bi-Lipschitz map.
- (B) Every separated net $Y \subset \mathbb{R}^n$ is bi-Lipschitz to \mathbb{Z}^n .

SORBONNI

Proof.

Definition 6 (Voronoi cell of S). If S is a set of points in \mathbb{R}^n , called centers, we define the Voronoi cell of S as the set of points that are closer to a given point y than to any other point in S:

$$V_y(S) = \{x \in \mathbb{R}^n \mid ||x - y|| < ||x - y'|| \text{ for all } y' \neq y \text{ in } S\}.$$

Definition 7 (diam(A)). The diameter of a set $A \subset \mathbb{R}^n$ is defined as:

$$diam(A) = \{ ||x - y|| : x \neq y, (x, y) \in A \times A \}.$$

It represents a set of the distance between any two different points in A.

Definition 8 (vol(A)). The volume of a set A in \mathbb{R}^n refers to the measure of its size in n-dimensional space. In \mathbb{R}^n , volume represents the n-dimensional measure of A:

$$vol(A) = \int_A d\mathcal{L}$$

Lemma 2. Let $Y \subset \mathbb{R}^n$ be a (a,b)-net. For the Voronoi cell of Y:

$$V_y(Y) = \{x \in \mathbb{R}^n \mid ||x - y|| < ||x - y'|| \text{ for all } y' \neq y \text{ in } Y\}.$$

We have:

- $M = \sup diam(V_y(Y)) < \infty$
- $m = \inf vol(V_y(Y)) > 0$

Proof. • We first estimate the diameter of $V_y(Y)$:

$$\sup diam(V_y(Y)) = \sup_{x, x' \in V_y(Y)} ||x - x'||.$$

Using the triangle inequality, we obtain:

$$\sup_{x,x' \in V_y(Y)} \|x - x'\| = \sup_{x,x' \in V_y(Y)} \|x - y + y - x'\|$$

$$\leq \sup_{x \in V_y(Y)} ||x - y|| + \sup_{x' \in V_y(Y)} ||y - x'|| \leq 2b < \infty.$$

• Next, we prove that $B(y, \frac{a}{2}) \subset V_y(Y)$. For any $x \in B(y, \frac{a}{2})$, we have $||x - y|| < \frac{a}{2}$. Since Y is an (a, b)-net, for any $y' \neq y$, we have $||y - y'|| \geq a$. Then, applying the triangle inequality:

$$2 \cdot ||x - y|| < a \le ||y - y'||.$$

Expanding using the triangle inequality:

$$||y - y'|| = ||y - x + x - y'|| \le ||x - y|| + ||x - y'||.$$

Therefore, we obtain:

$$||x - y|| < ||x - y'||, \quad \forall y' \neq y.$$

This implies $x \in V_y(Y)$, meaning that $B(y, \frac{a}{2}) \subset V_y(Y)$. Consequently, we conclude:

$$0 < vol(B(y, \frac{a}{2})) \le \inf vol(V_y(Y)).$$

Let

$$f(x) = \sum_{y \in Y} \frac{1}{vol(V_y(Y))} \mathbf{1}_{x \in V_y(Y)}$$

Then f is bounded by $\frac{1}{m}$ and $\frac{1}{f}$ bounded by M^n . Thanks to hypothesis (**A**), it exists that a bi-Lipschitz map ϕ from \mathbb{R}^n to \mathbb{R}^n , such that $det(jac(\phi)) = f$.

Lemma 3. We define that $D_y = \phi(V_y(Y))$, we have:

- $vol(D_y) = 1$
- $diam(D_y)$ is bounded.

Proof.

$$vol(D_y) = \int_{D_y} d\mu = \int_{V_y(Y)} f d\mu = 1$$

• Thanks to the definition of bi-Lipschitz, we have:

$$\sup diam(D_y) = \sup_{u,v \in D_y} \|u - v\| = \sup_{u,v \in \phi(V_y(Y))} \|u - v\| \le K \cdot \sup diam(V_y(Y)) < \infty$$

For $z \in \mathbb{Z}^n$, let E_z denote the unit cube centered at z. We have that $\sup diam(E_Z) = \sqrt{\sum_{k=1}^n 1^2} = \sqrt{n} < \infty$, so $diam(E_z)$ is bounded.

Definition 9 (The map R and the set R). We define a R, from Y to \mathbb{Z}^n , such that:

$$R(y) = \bigcup_{z \in \mathbb{Z}^n} \{z\} \cdot \mathbf{1}_{D_y \cap E_z \neq \phi}$$

We also definie a set $\mathcal{R} = \{(y, z) \in Y \times \mathbb{Z}^n : z \in R(y)\}$

SORBONN

Lemma 4. For all $(y, z) \in \mathcal{R}$, we have $\|\phi(y) - z\|$ is bounded.

Proof. For all $(y, z) \in \mathcal{R}$, by the previous definition, there exists a non-empty point $p \in \mathbb{R}^n$ such that $p \in D_y \cap E_z$. Then, we estimate:

$$\sup_{(y,z)\in\mathcal{R}} \|\phi(y) - z\| = \sup_{(y,z)\in\mathcal{R}} \|\phi(y) - p + p - z\|.$$

Using the triangle inequality, we obtain:

$$\sup_{(y,z)\in\mathcal{R}} \|\phi(y) - z\| \le \sup_{y\in Y} \|\phi(y) - p\| + \sup_{(y,z)\in\mathcal{R}} \|p - z\|.$$

Since $p \in D_y \cap E_z$, it follows that:

$$\sup_{y \in Y} \|\phi(y) - p\| \le \sup \operatorname{diam}(D_y), \quad \sup_{(y,z) \in \mathcal{R}} \|p - z\| \le \sup \operatorname{diam}(E_z).$$

Thus, we conclude:

$$\sup_{(y,z)\in\mathcal{R}} \|\phi(y) - z\| \le \sup \operatorname{diam}(D_y) + \sup \operatorname{diam}(E_z) < \infty.$$

For any finite set $A \subset Y$, we have:

$$|A| = \operatorname{vol}\left(\bigcup_{y \in A} D_y\right),\,$$

since $\operatorname{vol}(D_y) = 1$ and the sets D_y tile \mathbb{R}^n .

Since each D_y is covered by $\bigcup_{z \in R(y)} E_z$, it follows that:

$$\operatorname{vol}\left(\bigcup_{y\in A}D_y\right)\leq \operatorname{vol}\left(\bigcup_{y\in A}\bigcup_{z\in R(y)}E_z\right)=\operatorname{vol}\left(\bigcup_{z\in R(A)}E_z\right).$$

Since $vol(E_z) = 1$ and the sets E_z tile \mathbb{R}^n , we obtain:

$$\operatorname{vol}\left(\bigcup_{z\in R(A)} E_z\right) = |R(A)|.$$

Thus, we conclude:

$$|A| < |R(A)|.$$

Simmilary, $|R^{-1}(B)| \ge |B|$ for any finite set $B \subset \mathbb{Z}^n$

Theorem 6 (Hall's Marriage Theorem 1935). [Mir71]

A bipartite graph G = (U, V; E) admits a perfect matching if and only if, for every subset X of U (or of V, respectively), the number of vertices in V (or in U, respectively) adjacent to at least one vertex in X is greater than or equal to the cardinality of X.

Here we consider that U = Y, $V = \mathbb{Z}^n$ and $E = \mathcal{R}$. For any finite set $A \subset Y$, we have $|R(A)| \geq |A|$. By the Hall's Marriage Theorem, there exists an injective map ψ_1 from Y to \mathbb{Z}^n . Simmilarly, there exists an injective map ψ_2 from \mathbb{Z}^n to Y.

Theorem 7 (Schröder–Bernstein theorem). [Hal74]

If there exist injective functions $f:A\to B$ and $g:B\to A$ between the sets A and B, then there exists a bijective function $h:A\to B$.

By the Schröder-Bernstein theorem, there exists a bijection $\psi: Y \to \mathbb{Z}^n$. Thanks to Lemma 4, we have that this map ψ is bi-Lipschitz.

Theorem 8 (Equivalent theorem). Let $\rho: I^2 \to [1, 1+c]$ be a measurable function which is the Jacobian of any biLipschitz map $f: I^2 \to \mathbb{R}^2$ with

$$Jac(f) := \det(Df) = \rho$$
 a.e.

If and only if for every net in \mathbb{R}^2 is biLipschitz equivalent to \mathbb{Z}^2 .

Proof. • We prove \iff : The contraposition of Theorem 4.

• We prove \Longrightarrow : ρ and $\frac{1}{\rho}$ are bounded by 1+c and apply Theorem 5.

4.3 The counterexample

In this part, we will find a counterexample in \mathbb{R}^2 , which means:

Theorem 9 (Burago-Kleiner, McMullen). There exists an (a,b)-net in \mathbb{R}^2 which is not bi-Lipschitz equivalent to \mathbb{Z}^2

Proof. Before proving this theorem, we will see two lemmas first.

Lemma 5. Let $\lambda > 1$ and L > 1. There exist constants $M \in \mathbb{N}$, $\eta > 0$, and $\mu > 1$ with the following properties:

- $8L(\eta L + L/M) + \pi(\eta L + L/M)^2 < (\lambda 1)/2$ (Inequality 1),
- $\mu^2 < 1 + \eta^2/5$ (Inequality 2),
- $(1 \eta^2/5) + ((M+1)^2 1)\mu < (M+1)^2$ (Inequality 3).

SORBONN

Proof. Let $\eta = \frac{1}{M}$, where M is a sufficiently large natural number (to be determined). Define $\mu = 1 + \epsilon$, where $\epsilon > 0$ is a small parameter depending on M. We will choose ϵ to satisfy the inequalities.

Substitute $\eta = \frac{1}{M}$ into Inequality 1:

$$8L\left(\frac{L}{M} + \frac{L}{M}\right) + \pi\left(\frac{L}{M} + \frac{L}{M}\right)^2 = \frac{16L^2}{M} + \frac{4\pi L^2}{M^2}.$$

This simplifies to:

$$\frac{16L^2}{M} + \frac{4\pi L^2}{M^2} < \frac{\lambda - 1}{2}.$$

For sufficiently large M, both terms on the left become arbitrarily small. Thus, there exists $M_1 \in \mathbb{N}$ such that for all $M \geq M_1$, the inequality holds.

Substitute $\eta = \frac{1}{M}$ into Inequality 2:

$$\mu^2 < 1 + \frac{1}{5M^2}.$$

Let $\mu = 1 + \epsilon$. Then:

$$(1+\epsilon)^2 = 1 + 2\epsilon + \epsilon^2 < 1 + \frac{1}{5M^2}.$$

This requires:

$$2\epsilon + \epsilon^2 < \frac{1}{5M^2}.$$

If we choose $\epsilon = \frac{1}{10M^4}$, then:

$$2\epsilon = \frac{2}{10M^4} = \frac{1}{5M^4}, \quad \epsilon^2 = \frac{1}{100M^8}.$$

Thus:

$$2\epsilon + \epsilon^2 < \frac{1}{5M^4} + \frac{1}{100M^8} < \frac{1}{5M^2}$$
 for $M \ge 1$.

Hence, $\mu = 1 + \frac{1}{10M^4}$ satisfies Inequality 2. Substitute $\eta = \frac{1}{M}$ and $\mu = 1 + \frac{1}{10M^4}$ into Inequality 3:

$$\left(1 - \frac{1}{5M^2}\right) + \left[(M+1)^2 - 1\right] \left(1 + \frac{1}{10M^4}\right) < (M+1)^2.$$

Expand the left-hand side (LHS):

$$1 - \frac{1}{5M^2} + (M^2 + 2M) \left(1 + \frac{1}{10M^4} \right).$$

$$= 1 - \frac{1}{5M^2} + (M^2 + 2M) + \frac{M^2 + 2M}{10M^4}.$$

$$= (M+1)^2 - \frac{1}{5M^2} + \frac{1}{10M^2} + \frac{2}{10M^3}.$$

$$= (M+1)^2 - \frac{1}{10M^2} + \frac{1}{5M^3}.$$

Since $-\frac{1}{10M^2} + \frac{1}{5M^3} < 0$ for $M \ge 2$, we have:

LHS <
$$(M+1)^2$$
.

Thus, Inequality 3 holds for $M \ge 2$. Finally, choose $M = \max\{M_1, 2\}$, $\eta = \frac{1}{M}$, and $\mu = 1 + \frac{1}{10M^4}$. By construction:

- Inequality 1 holds for $M \geq M_1$,
- Inequality 2 holds for $\mu = 1 + \frac{1}{10M^4}$,
- Inequality 3 holds for $M \geq 2$.

Therefore, such M, η , and μ exist.

These constants will be used to prove the statement below.

Lemma 6. [BL98] Let $\lambda > 1$ and L > 1 be arbitrary constants. Then there exists a constant $\mu > 1$ such that the following holds.

Let $x, y \in \mathbb{R}^2$ be two distinct points, and let U be an open neighborhood of the closed segment $[x, y] \subset \mathbb{R}^2$.

Then, one can construct:

- a measurable function $f: U \to \{1, \lambda\}$,
- a finite collection of pairwise disjoint closed segments $I_j = [x_j, y_j] \subset U$, and
- $a \text{ small constant } \varepsilon > 0$,

with the following property:

Suppose that $\varphi: U \to \mathbb{R}^2$ is a bi-Lipschitz homeomorphism (i.e., a Lipschitz bijection whose inverse is also Lipschitz), such that:

- the Lipschitz constants of both φ and φ^{-1} are bounded by L, and
- the Jacobian determinant $J(\varphi)$ differs from f only on a set of small measure:

$$\mathcal{L}\{u \in U : J(\varphi)(u) \neq f(u)\} < \varepsilon,$$

where \mathcal{L} denotes the Lebesgue measure.

Then there exists an index j such that:

$$\frac{\|\varphi(x_j) - \varphi(y_j)\|}{\|x_j - y_j\|} \ge \mu \cdot \frac{\|\varphi(x) - \varphi(y)\|}{\|x - y\|}.$$

Proof. First, thanks to Lemma 5, choose a positive integer M and $\eta > 0$ such that

$$8L(\eta L + L/M) + \pi(\eta L + L/M)^2 < \frac{\lambda - 1}{2}.$$

Next, pick $\mu > 1$ so that $\mu^2 < 1 + \eta^2/5$ and

$$(1 - \eta^2/5) + ((M+1)^2 - 1)\mu < (M+1)^2.$$

We use a suitable scaling and choice of coordinates so that U is a neighborhood of the line segment connecting x = (0,0) and y = (1,0). For a sufficiently large integer N (later we will see further constraints on N), the set U contains the rectangle

$$R = \{(s,t): 0 \le s \le 1, \ 0 \le t \le 1/N\}.$$

We partition R into N adjacent squares, looking at Figure 3:

$$S_i = \{(s,t) : (i-1)/N \le s \le i/N, \ 0 \le t \le 1/N\}, \quad i = 1, 2, \dots, N.$$

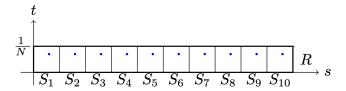


Figure 3: For N = 10, the sketch map of R, S_i and $z_{k,l}$ for some k and l (blue points)

Define a function f on R such that f = 1 on S_i when i is even, and $f = \lambda$ on S_i when i is odd.

Next, introduce a grid of points at spacing $(MN)^{-1}$. For each $1 \le i \le N$, $0 \le k < M$, and $0 \le l \le M$, define

$$z_{k,l}(i) = \left(\frac{i-1}{N} + \frac{k}{MN}, \frac{l}{MN}\right).$$

Let $\varphi: U \to \mathbb{R}^2$ be a homeomorphism whose Lipschitz constant and that of its inverse are both bounded by L. Without loss of generality, assume:

$$\varphi(x) = (0,0)$$
 and $\varphi(y) = (a,0)$

for some a > 0. For each $1 \le i \le N - 1$, set

$$w_{k,l}(i) = \varphi(z_{k,l}(i+1)) - \varphi(z_{k,l}(i)).$$

Our goal is to show that if ε is sufficiently small and

$$\mathcal{L}\{x \in U : J(\varphi)(x) \neq f(x)\} < \varepsilon,$$

then there must be some choice of (k, l, i) with

$$||w_{k,l}(i)|| \ge \frac{\mu a}{N}.$$

This proves the lemma because one can then separate the image of the intervals

$$J_{k,l,i} = [z_{k,l}(i), z_{k,l}(i+1)]$$

(which are all parallel to the x-axis) by a small displacement, using the Lipschitz nature of φ . Assume, for the sake of contradiction, that

$$||w_{k,l}(i)|| \le \frac{\mu a}{N}$$
 for all k, l, i .

We will prove that there is some index i for which all k, l satisfy

$$\|w_{k,l}(i) - w\| \le \frac{\eta a}{N},$$

where w = (a/N, 0). In other words, $w_{k,l}(i)$ is close to the pure horizontal displacement w.

Let $\rho_{k,l}(i)$ be the length of the projection of $w_{k,l}(i)$ onto the x-axis. Since $||w_{k,l}(i)|| \le \mu a/N$ and $\mu^2 < 1 + \eta^2/5$, we only need to show that some i makes

$$\rho_{k,l}(i) \ge \left(1 - \frac{\eta^2}{5}\right) \frac{a}{N} \quad \text{for all } k, l.$$

Suppose no such i exists. There are indices $0 \le r < M$ and $0 \le s \le M$, by the pigeonhole

principle:

• $i = 1 \rightarrow (k_1, l_1) \in \{0, 1, ..., M\}^2$

 $\bullet \ i=2 \to (k_2, l_2)$

• $i = N \rightarrow (k_N, l_N)$

There exists $\lfloor \frac{N}{(M+1)^2} \rfloor$ many i's such that (k_j, l_j) is the same point to (r, s). Then there is a subset $I \subset \{0, 1, \ldots, N-1\}$ of size

$$|I| \geq \frac{N}{(M+1)^2}$$

such that for every $i \in I$,

$$\rho_{r,s}(i) < \left(1 - \frac{\eta^2}{5}\right) \frac{a}{N}.$$

Looking at Figure 4, consider the polygonal path formed by connecting (0,0), $(0,\frac{s}{MN})$, $z_{r,s}(1)$, $z_{r,s}(2),\ldots,z_{r,s}(N)$, $(1,\frac{s}{MN})$, and finally (1,0). Its image under φ goes from (0,0) to (a,0), so the projection of this image on the x-axis has length at least a.

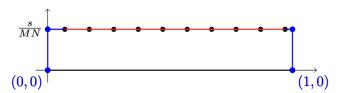


Figure 4: In the polygonal path we constructed, the black points represent $Z_{r,s}(i)$ for $i \in \{1, 2, ..., N\}$, while the blue points correspond to (0, 0), $(0, \frac{s}{MN})$, $(1, \frac{s}{MN})$, and (1, 0).

On I, the horizontal projections of $w_{r,s}(i)$ are less than $(1-\eta^2/5)(a/N)$; on the complement of I, they are at most $\mu a/N$. In addition, by the L-Lipschitz property, the two vertical segments and the first and last horizontal segments (i.e., the two blue lines parallel to the x-axis) each have images of length at most L/N. The remaining two blue lines also have images of length at most L/N each. Combining these estimates, the total projected length on the x-axis becomes:

$$a \leq \frac{N}{(M+1)^2} \left(1 - \frac{\eta^2}{5}\right) \frac{a}{N} + \left(N - \frac{N}{(M+1)^2}\right) \frac{\mu a}{N} + \frac{4L}{N}.$$

For large N, this contradicts our choice of μ (because of the condition $(1 - \eta^2/5) + ((M+1)^2 - 1)\mu < (M+1)^2$). Hence our assumption fails, and we can pick i with the desired property

$$\|w_{k,l}(i) - w\| \le \frac{\eta a}{N}$$
 for all k, l .

Now compare the areas of $\varphi(S_i)$ and $\varphi(S_{i+1})$. Note that translating $\varphi(S_i)$ by w does not change its area. Also,

$$\left\| \left(\varphi(z_{k,l}(i)) + w \right) - \varphi(z_{k,l}(i+1)) \right\| \le \frac{\eta a}{N}, \tag{2}$$

Definition 10 (Hausdorff distance). Let (M,d) be a metric space. Looking at Figure 5, for each pair of non-empty subsets $X \subset M$ and $Y \subset M$, the Hausdorff distance between X and Y is defined as

$$d_H(X,Y) := \max \left\{ \sup_{x \in X} d(x,Y), \sup_{y \in Y} d(X,y) \right\},\,$$

where

$$d(a,B) := \inf_{b \in B} d(a,b)$$

quantifies the distance from a point $a \in X$ to the subset $B \subseteq X$.

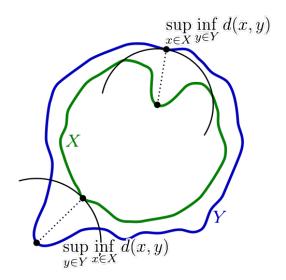


Figure 5: Components of the calculation of the Hausdorff distance between the green curve X and the blue curve Y.

Thanks to (2), each pair of corresponding points are within a distance of at most $\frac{\eta a}{N}$. Looking at Figure 6, every point lies within $\frac{L}{MN}$ of the boundary (we can move the second point on the boundary). Thanks to triangle inequality, the sets $\varphi(S_i) + w$ and $\varphi(S_{i+1})$ have boundaries at most $\eta a/N + L/(MN)$ apart in the Hausdorff sense.

Definition 11 (δ -neighborhood). Let γ be a curve in \mathbb{R}^2 , parameterized by arc length and of

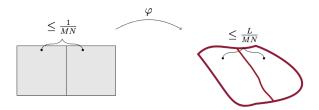


Figure 6: Two points in S_i and S_{i+1} are transferred via φ

total length l. The δ -neighborhood of γ is defined as

$$N_{\delta}(\gamma) := \{ x \in \mathbb{R}^2 : \operatorname{dist}(x, \gamma) < \delta \},$$

Claim 1. Let γ be a curve in \mathbb{R}^2 of length l. Then for any $\delta > 0$, the area of its δ -neighborhood satisfies the upper bound:

$$\mathcal{L}(N_{\delta}(\gamma)) \leq 2\delta l + \pi \delta^2$$
.

Since each boundary has length at most 4L/N, the standard upper bound on the measure of a δ -neighborhood shows

$$|\mathcal{L}(\varphi(S_i)) - \mathcal{L}(\varphi(S_{i+1}))| = |\mathcal{L}(\varphi(S_i) + w) - \mathcal{L}(\varphi(S_{i+1}))| \le 8\left(\frac{L}{N}\right)\left(\frac{\eta a}{N} + \frac{L}{MN}\right) + \pi\left(\frac{\eta a}{N} + \frac{L}{MN}\right)^2.$$

Since $a \leq L$, our initial choice of M and η implies

$$8\Big(\frac{L}{N}\Big)\Big(\eta\frac{L}{N} + \frac{L}{MN}\Big) + \pi\Big(\eta\frac{L}{N} + \frac{L}{MN}\Big)^2 \ < \ \frac{\lambda-1}{2N^2}.$$

Therefore

$$\left| \mathcal{L}(\varphi(S_i)) - \mathcal{L}(\varphi(S_{i+1})) \right| < \frac{\lambda - 1}{2N^2}.$$

By the definition of Area:

$$\mathcal{L}(\varphi(S_i)) = \int_{S_i} Jac(\varphi) d\mathcal{L} = \int_{S_i \cap \{Jac(\varphi) = f\}} \mathbf{1}_{\{i \text{ even}\}} + \lambda_{\{i \text{ odd}\}} d\mathcal{L} + \int_{S_i \cap \{Jac(\varphi) \neq f\}} Jac(\varphi) d\mathcal{L}$$

Now suppose i is even. By construction, f = 1 on S_i and $f = \lambda$ on S_{i+1} , except on sets of total measure at most ε . Because $J(\varphi) = f$ almost everywhere outside a set of measure ε , we get

$$\mathcal{L}(\varphi(S_i)) \leq \frac{1}{N^2} + \varepsilon L^2, \quad \mathcal{L}(\varphi(S_{i+1})) \geq \frac{\lambda}{N^2} - \varepsilon L^2.$$

Hence,

$$\mathcal{L}(\varphi(S_{i+1})) - \mathcal{L}(\varphi(S_i)) \geq \frac{\lambda - 1}{N^2} - 2\varepsilon L^2.$$

On the other hand, we have just shown

$$\mathcal{L}(\varphi(S_{i+1})) - \mathcal{L}(\varphi(S_i)) < \frac{\lambda - 1}{2N^2},$$

leading to

$$\frac{\lambda - 1}{2N^2} > \; \frac{\lambda - 1}{N^2} - 2\,\varepsilon\,L^2 \implies (\lambda - 1)\,\left(\frac{1}{2} - 1\right)\,\frac{1}{N^2} \; < \; -2\,\varepsilon\,L^2.$$

This is impossible if

$$\varepsilon \ < \ \frac{\lambda - 1}{4 \, N^2 \, L^2}.$$

Hence our assumption must be false, completing the proof.

We begin by fixing a real number $\lambda > 1$, and consider a countable family of pairwise disjoint open sets $\{U_L : L = 1, 2, ...\}$ contained in some domain $B \subset \mathbb{R}^2$. Our goal is to assign, for each L, a function

$$f_L: U_L \to \{1, \lambda\}$$

with the property that no bi-Lipschitz map

$$\varphi: U_L \longrightarrow \mathbb{R}^2$$

can have Lipschitz constant (and inverse Lipschitz constant) bounded by L while simultaneously satisfying $J(\varphi) = f_L$ throughout U_L . Here $J(\varphi)$ denotes the Jacobian determinant of φ . Eventually, we define a global function f on B by letting $f = f_L$ on each U_L and setting f = 1 outside $\bigcup_L U_L$.

Choose a parameter $\mu = \mu(\lambda, L)$ according to a Lemma 6, ensuring certain stretching properties. Let k be an integer such that $\mu^k/L > L$. By repeated use of the lemma, we inductively construct:

- Finite collections of disjoint line segments $\{I_{n,j}\}$ in U_L , for $1 \le n \le k$,
- Positive numbers $\varepsilon_n > 0$,
- Functions g_n defined on U_L ,
- Disjoint open sets $U_{n,j} \supset I_{n,j}$,

all built step by step as follows.

Take two interior points $x, y \in U_L$. By applying the Lemma 6 once, we obtain a function g_1 on U_L , a finite family of disjoint segments $\{I_{1,j}\}$, and a small $\varepsilon_1 > 0$. We then choose disjoint open sets $U_{1,j}$ (each containing $I_{1,j}$) so that the total area of $\bigcup_j U_{1,j}$ is under $\varepsilon_1/2$. This ensures that the measure of the set where Jac is not equal to g_1 is less than ε_1 . This concludes the first iteration.

Next, we restrict attention to each open set $U_{1,j}$ individually. On $U_L \setminus \bigcup_j U_{1,j}$ we keep the function g_1 , and we refine it inside each $U_{1,j}$ as follows:

- For a given $I_{1,j}$, we again apply the lemma with $I_{1,j}$ as endpoints and $U_{1,j}$ as domain to get a new function $g_{1,j}$, a smaller $\varepsilon_{1,j}$, and a disjoint family of segments $\{I_{1,j,k}\}$.
- We define g_2 to be $g_{1,j}$ within $U_{1,j}$; set $\varepsilon_2 = \min_j \varepsilon_{1,j}$.
- Around each $I_{1,j,k}$, choose a slightly larger open set $U_{1,j,k} \subset U_{1,j}$ of small total area (so that $\bigcup_{i,k} U_{1,j,k}$ has area less than $\varepsilon_2/2$).

We then renumber all $I_{1,j,k}$ as $I_{2,j}$ and similarly $U_{1,j,k}$ as $U_{2,j}$. This completes the second step.

We repeat this procedure k times, each time refining the function inside the newly-created open sets. After k such iterations, the final function g_k is declared to be f_L .

Suppose, for contradiction, that there is a homeomorphism $\varphi: U_L \to \mathbb{R}^2$ that is L-Lipschitz and whose inverse is also L-Lipschitz, with $J(\varphi) = f_L$ on U_L . Observe that this implies

$$\frac{\|\varphi(x) - \varphi(y)\|}{\|x - y\|} \ge \frac{1}{L}.$$

Due to our first-step construction, there exits j such that $I_i^1 = [x_{1,j}, y_{1,j}]$ for which

$$\frac{\|\varphi(x_{1,j}) - \varphi(y_{1,j})\|}{\|x_{1,j} - y_{1,j}\|} \ge \frac{\mu}{L}.$$

Repeating this logic in the second step yields another segment $I_{2,j}$ where the Lipschitz distortion is at least μ^2/L . After k such iterations, we obtain points u, v with

$$\frac{\|\varphi(u) - \varphi(v)\|}{\|u - v\|} \ge \frac{\mu^k}{L} > L,$$

which violates the assumption that φ is L-Lipschitz. Thus such a bi-Lipschitz map φ cannot exist.

Since each U_L admits a function f_L obstructing any L-Lipschitz homeomorphism of that specific type, and since these sets U_L cover the construction needed for an (a, b)-net outside the standard lattice structure, we conclude there is indeed an (a, b)-net in \mathbb{R}^2 not bi-Lipschitz equivalent to \mathbb{Z}^2 by the Theorem 8.

5 The case of infinite-dimensional Banach spaces

Definition 12 (Density character). The density character of a metric space (X, d) is the least cardinality of a dense subset of X.

Theorem 10. Any net in an infinite-dimensional Banach space X has cardinality equal to the density character of X. In particular, any two nets have the same cardinality.

Proof. Let \mathcal{N} be a net in an infinite-dimensional Banach space X and dc(X) the density character of X. In this proof, have 2 directions:

• We prove $|\mathcal{N}| \leq dc(X)$:

By the definition of density character, there exists a subset C in X such that $\overline{C} = X$ and |C| = dc(X). We construct a family of disjoint sets, $\{B(n, \frac{a}{2})\}_{n \in \mathcal{N}}$. Because C is dense in X, we have the intersection of any nonempty open set and C isn't equal to the empty set, (i.e, let \mathcal{O} be a nonempty open set in X, we have $\mathcal{O} \cap C \neq \phi$.)

Now we choose $d_u \in B(u, \frac{a}{2}) \cap C$ and define a map:

$$\psi: \mathcal{N} \to C$$
$$u \mapsto d_u$$

which is well-defined. Then ψ is an injection since \mathcal{N} is a-separated, so we have

$$|\mathcal{N}| = |Im(\psi)| \le |C| = dc(X)$$

• We prove $|\mathcal{N}| \ge dc(X)$:

We begin with 2 claims first.

Claim 2. All finite rational linear combinations of \mathcal{N} are dense in X. i.e,

$$\overline{Span_{\mathbb{Q}}(\mathcal{N})} = \overline{\{all\ finite\ rational\ linear\ combinations\ of\ \mathcal{N}\}} = X$$

with rational linear combination = $\sum_{i=1}^{m} \alpha_i n_i$ for some $m \in \mathbb{N}$, $\alpha_i \in \mathbb{Q}$, $n_i \in \mathcal{N}$.

Proof. If $\overline{Span_{\mathbb{Q}}(\mathcal{N})} \neq X$, let $v \in X \setminus \overline{Span_{\mathbb{Q}}(\mathcal{N})}$. We have, for all $t \in \mathbb{Q}$:

$$t \cdot d(v, \overline{Span_{\mathbb{O}}(\mathcal{N})}) = d(tv, \overline{Span_{\mathbb{O}}(\mathcal{N})}) \leq d(tv, \mathcal{N}) \leq b$$

We have $d(v, \overline{Span_{\mathbb{Q}}(\mathcal{N})}) \leq \frac{b}{t}$, take $t \to +\infty$, $d(v, \overline{Span_{\mathbb{Q}}(\mathcal{N})}) = 0$. Contradiction.

Claim 3.

$$Card(Span_{\mathbb{O}}(\mathcal{N})) = |\mathcal{N}|$$

Proof. This is because to every element of $Span_{\mathbb{Q}}(\mathcal{N})$, we can associate a finite subset of \mathcal{N} and a finite subset of the rationals. It is then standard to construct an injection into \mathcal{N} . The converse inequality is trivial.

Thanks to the two claims, we have:

$$Card(Span_{\mathbb{Q}}(\mathcal{N})) = |\mathcal{N}| \ge |C| = dc(X)$$

because C is the smallest dense subset of X. The proof is now complete by the Schroeder–Bernstein theorem.

Lemma 7. Let X be a metric space, and let \mathcal{N}_1 and \mathcal{N}_2 be two nets in X. Let $T: \mathcal{N}_1 \to \mathcal{N}_2$ be a bijective map by the Theorem 10, such that $\sup\{d(x,Tx): x \in \mathcal{N}_1\} < \infty$. Then T is a bi-Lipschitz equivalence between the two nets.

Proof. It's enough to prove that T^{-1} is a Lipschitz map because of the symmetry.

Let \mathcal{N}_2 be an (a, b)-net in X, and put $c = \sup\{d(x, Tx) : x \in \mathcal{N}_1\}$. Fix two points $x \neq y$ in \mathcal{N}_1 , so we have 2 cases to discuss :

• If $d(x,y) \leq 4c$, thanks to the a-separated property of \mathcal{N}_2 and $\frac{d(x,y)}{4c} \leq 1$, then

$$d(Tx, Ty) \ge a \ge a \frac{d(x, y)}{4c} = \frac{a}{4c}d(x, y)$$

• If $d(x,y) \ge 4c \iff \frac{d(x,y)}{2} \ge 2c$, then

$$d(Tx, Ty) \ge d(x, y) - [d(x, Tx) + d(y, Ty)] \ge d(x, y) - 2c \ge \frac{d(x, y)}{2}$$

Hence T^{-1} is Lipschitz with constant $\max\{2,\frac{4c}{a}\}$

Theorem 11 (Lindenstrauss, Matoušková, Preiss). Let E be an infinite-dimensional Banach space. Then any two nets in E are Bi-lipschitz equivalent.

Proof. Suppose that \mathcal{N}_1 and \mathcal{N}_2 are both (a,b)-nets in E. Our goal is to construct a bijection $T: \mathcal{N}_1 \to \mathcal{N}_2$ such that $\sup_{x \in \mathcal{N}_1} \|x - Tx\| < \infty$. By previous lemma, this will imply that T is a bi-Lipschitz equivalence.

Let $\{y_{\alpha}\}_{{\alpha}\in I}$ be a maximal 5*b*-separated subset of *E*. This means:

• (5*b*-separated) $||y_{\alpha} - y_{\beta}|| \ge 5b$ for all $\alpha \ne \beta$.

• (Maximal) The set $\{y_{\alpha}\}$ is maximal with respect to this property (i.e., adding any new point would violate the separation).

Using this family $\{y_{\alpha}\}_{{\alpha}\in I}$, we decompose E into disjoint subsets $\{C_{\alpha}\}$ as follows:

$$||x - y_{\alpha}|| \le 5b \implies x \in C_{\alpha},$$

and assign x to exactly one C_{α} . We do it in such a way that each C_{α} remains disjoint from all C_{β} ($\beta \neq \alpha$), and each C_{α} has diam(C_{α}) $\leq 10b$.

This is feasible precisely because $\{y_{\alpha}\}$ is maximal 5*b*-separated. The maximality implies that for each x, there exists such an α and moreover, for any $x' \in C_{\alpha}$ we have

$$||x - x'|| \le ||x - y_{\alpha}|| + ||y_{\alpha} - x'|| \le 5b + 5b = 10b.$$

Thus each C_{α} is of diameter at most 10b, and the sets $\{C_{\alpha}\}$ form a partition of E.

Now observe that for each index α , the intersections

$$C_{\alpha} \cap \mathcal{N}_1$$
 and $C_{\alpha} \cap \mathcal{N}_2$

are both infinite sets. Indeed, \mathcal{N}_1 and \mathcal{N}_2 are (a,b)-nets in an infinite-dimensional Banach space, so in "big enough" subsets of E (such as these C_{α} of diameter at least 5b), each net has infinitely many points. Crucially, by arguments in the spirit of Theorem 10 on density, these sets $(C_{\alpha} \cap \mathcal{N}_i)$ have the same cardinality as the density character of E. Hence

$$|C_{\alpha} \cap \mathcal{N}_1| = |C_{\alpha} \cap \mathcal{N}_2|$$

so we can define a bijection

$$T_{\alpha}: C_{\alpha} \cap \mathcal{N}_1 \longrightarrow C_{\alpha} \cap \mathcal{N}_2.$$

Do this for each α .

We now assemble these partial bijections T_{α} into one global mapping $T: \mathcal{N}_1 \to \mathcal{N}_2$ by the rule

$$T(x) = T_{\alpha}(x)$$
 for $x \in C_{\alpha} \cap \mathcal{N}_1$.

This is well-defined since each point $x \in \mathcal{N}_1$ lies in exactly one C_{α} .

Next, for each $x \in \mathcal{N}_1$, because x and Tx both lie in the same block C_{α} , we deduce

$$||x - Tx|| \le \operatorname{diam}(C_{\alpha}) \le 10b.$$

Hence

$$\sup_{x \in \mathcal{N}_1} \|x - Tx\| \le 10b < \infty.$$

The proof is now complete by Lemma 7.

References

- [BK98] Dmitri Burago and Bruce Kleiner. "Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps". In: *Geometric and Functional Analysis* 8.2 (1998), pp. 273–282. DOI: 10.1007/s000390050056. URL: https://link.springer.com/article/10.1007/s000390050056.
- Y. Benyamini and J. Lindenstrauss. Geometric Nonlinear Functional Analysis. American Mathematical Society colloquium publications Volume 1. American Mathematical Soc., 1998. ISBN: 9780821869635. URL: https://books.google.fr/books?id=1XZ95EKwjYUC.
- [Gro93] Mikhail Gromov. "Asymptotic Invariants of Infinite Groups". In: Geometric Group Theory, Volume 2. Ed. by Graham Niblo and Martin Roller. Vol. 182. London Mathematical Society Lecture Note Series. Proceedings of the Symposium held in Sussex, 1991. Cambridge: Cambridge University Press, 1993, pp. 1–295.
- [Hal74] Paul R. Halmos. Naive Set Theory. New York: Springer-Verlag, 1974.
- [LKP00] Joram Lindenstrauss, Eva Kopecká, and David Preiss. "Lipschitz image of a measure-null set can have a null complement". In: *Israel Journal of Mathematics* 118 (2000), pp. 207–219. DOI: 10.1007/BF02810573. URL: https://link.springer.com/article/10.1007/BF02810573.
- [McM98] Curtis T. McMullen. "Lipschitz maps and nets in Euclidean space". In: Geometric and Functional Analysis 8.2 (1998), pp. 304-314. DOI: 10.1007/s000390050058. URL: https://link.springer.com/article/10.1007/s000390050058.
- [Mir71] Leonard Mirsky. Transversal Theory. London: Academic Press, 1971.

