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tion supervisée et la régression non paramétrique. Le Chapitre 4 est une
introduction au clustering (ou classification non supervisée). Le Chapitre 5
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tillon grandit). Enfin le Chapitre 6 porte sur I'estimation (paramétrique) par
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Premiere partie

Apprentissage supervisé



Chapitre 1

Introduction a I'apprentissage
supervise

1.1 Objectifs

On considere un couple (X,Y) de variables aléatoires a valeurs dans R? x
Y, avec Y = {0,1} (classification binaire) ou Y = {1,2,..., M} (classifi-
cation multi-classes) ou encore ) = R ou un sous-ensemble borné de R
(régression). La variable X est appelée variable explicative et la variable Y
est appelée label, classe ou étiquette (dans la cas de la classification) ou
encore réponse ou variable a prédire (dans le cas de la régression). L'ap-
prentissage supervisé, qu’il s’agisse de classification supervisée (binaire ou
multi-classes) ou de régression, consiste a prédire au mieux Y a partir de
X, c’est-a-dire a construire une fonction borélienne ¢ : RY — ) qui, a un x
donné (réalisation de X) associe une valeur y € )} qui correspond a son la-
bel supposé (cas ) discret) ou a sa réponse (cas continu réél). Pour prendre
un exemple en classification binaire, on peut penser a X comme un vecteur
de variables aléatoires représentant les fréquences d'un certain nombre de
mots-clés dans un email, et 8 Y comme la variable associée exprimant le
fait que l'email est sain (label 0) ou bien spam (label 1). Dans le contexte
de la régression, X peut-étre la dose d’insuline injectée a un patient diabé-
tique et Y le taux de glucose dans le sang de ce patient apres 30 minutes.
La fonction g s’appelle un prédicteur ou regle de décision.

Dans la suite, la loi du couple (X, Y) sera notée v, tandis que la marginale
en X est notée y (i.e. A € B(R?), u(A) =P(X € A)) et r est la fonction de
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régression de Y sur X, définie par

r(x) = E(Y|X=x) = /yydv(x,y).

C’est donc I'espérance conditionnelle de la variable a prédire, sachant la va-
riable explicative. On peut noter que dans le cas de la classification binaire,
la loi du couple (X, Y) est entierement caractérisée par le couple (y,r) et
r(x) = P(Y = 1]X = x) puisque dans ce cas Y prend ses valeurs dans
{0,1}.

Attention! Dans ce modele, Y n’est pas nécessairement lié a X de maniére
fonctionnelle, i.e. rien ne dit qu’il existe une fonction ¢ telle que Y = ¢(X).
Pour s’en convaincre, il suffit de penser a I'exemple des emails, au sein
duquel le mot «livraison » peut étre associé a un label spam ou non. De
méme, le taux du glucose d’un patient n’est pas exactement déterminé par
la dose d’insuline absorbée. La modélisation nous dit seulement que nous
envisageons Y comme une fonction bruitée (aléatoire) de X.

Bien entendu, n'importe quelle fonction borélienne ¢ : RY — ) fournit
un prédicteur et il est donc nécessaire d’adjoindre un critére de qualité a
chaque décision.

1.2 Fonction de perte et risque

On se donne donc une fonction de perte (ou de cotit) £ : V) x YV +— R (ou le
plus souvent R ), out £(y, z) mesure l'erreur (la perte) lorsque 1'on prédit z
tandis que la vraie valeur est y.

Exemples.

1. Dans le cas de la classification binaire, J) = {0,1}, une erreur de
classification se produit lorsque z # y. On définit naturellement la
fonction de cotit £(y,z) = 1,..,. Cette fonction s’appelle perte 0-1.

2. En classification multi-classes, on peut également utiliser la perte 0-1,
ie. £(y,z) = 1,4, De facon parfaitement équivalente, en utilisant la
notation ) = {0,1}M (plutot que {1,..., M}) on définit le cott de
Hamming /(y,z) = Z]-Ail Ly 4z

3. En régression, J = R et {(y,z) = (y — z)? est le colit quadratique
tandis que ¢(y,z) = |y — z| est le cotit absolu.
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A partir d’une fonction de cotit £, on introduit le risque attendu (ou erreur
de généralisation) d'une fonction g : R? — ) défini par

R(g) = EA(Y,g(X)) = [

iy LW 8())dv(xy). (1.1)

Cette quantité dépend de la loi inconnue v du couple (X, Y).

Exemples

1. En classification binaire, avec la perte 0-1, on obtient R(g) = P(Y #
2(X)). En classification multi-classes avec le cotit de Hamming, on a
de méme R(g) = P(Y # g(X)).

2. En régression avec le cotit quadratique, /(y,z) = (y — z)%, on obtient
R(g) = E(Y — g(X))? qui est l'erreur quadratique moyenne (MSE
pour mean-squared error en anglais).

2

Dans la suite, la fonction de perte (et donc le risque attendu) sont fixés.
Pour la classification, il s’agit de la perte 0-1 et pour la régression, de la
perte quadratique.

La quantité R(g), qui mesure la pertinence de la regle g, permet donc de
hiérarchiser les fonctions de décision agissant sur le couple (X,Y). Il est
alors légitime de se poser la question de l'existence éventuelle d'une regle
meilleure que les autres. Ce champion existe et s’appelle le prédicteur de
Bayes. Pour l'introduire, il nous faut la notion de risque conditionnel. Pour
tous (x,z) € RY x ) on note

r(zlx) =E(¢((Y,z)|X = x)
et on remarque que
R(g) = BE(A(Y,g(X)IX) = [ r(g(x)lx)dn(x).
Proposition 1 (RISQUE ET PREDICTEUR DE BAYES). Le risque attendu R est
minimum pour un prédicteur de Bayes ¢* : R? — Y qui satisfait

g*(x) € ArgminE(£(Y,z)|X = x) = Argminr(z|x), Vx € R (1.2)
zey zey

Le risque de Bayes R* est le risque de n’importe quel prédicteur de Bayes et vaut

R* = R(g") = E inf E((Y,2)|X = x) = /IR inf E(£(Y,2)]X = x)dp(x).

zeY dze)
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Démonstration. Pour toute fonction borélienne ¢ : R? — )Y,ona

R() - R* =R(g) = R(g") = [, [r(g()|) ~ inf r(z|)] (),

ce qui prouve le résultat annoncé. O

Dans la foulée, on définit 1'exces de risque d'un prédicteur ¢ comme la
différence R(g) — R* > 0.

Le prédicteur de Bayes n’est pas nécessairement unique, comme le montre
I'exemple suivant en classification binaire, mais tous les choix possibles
induisent le méme risque minimum.

Exemple de la classification binaire. En classification binaire (et pour la
perte 0-1), le prédicteur de Bayes est défini par

o (1 siP(Y=1X=2x)>P(Y =0|X = x)
g(x)—{o sinon.

(Ici, les égalités sont rompues en faveur de 0 par convention, mais l'autre
choix conduirait également a un prédicteur de Bayes.) De facon équiva-
lente,

w1 sir(x)>1/2
§"(x) = { 0 sinon.
On vérifie aisément que quelle que soit la regle de décision ¢ : RY — {0,1},
on a
R(g") < R(8)-
En effet, puisque P(g(X) #Y)=1—-P (g(X) =Y),ona

L'inégalité ci-dessus provient du fait que

P(g(X) =Y|X) =P(g(X) =1,Y =1|X) +P(g(X) = 0,Y = 0[X)
= Ty(x)=1P(Y = 1|X) + Ty(x)—oP(Y = 0|X)
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et, de facon similaire,
P(g*(X) = Y|X) = Lgwx)=1 P(Y = 1| X) + Lo (x)—oP (Y = 0] X)
=max (P(Y =0|X),P(Y =1|X)),
par définition de g*. Il est clair que

Lo(x)=1P(Y = 1|X) + Ly -oP(Y = 0]X) — max (P(Y = 0]X), P(Y = 1]X))
= L)1 <]P(Y — 1|X) — max(PP(Y = 0|X), P(Y = 1|X)))

Flgx)-0(P(Y = 0]X) — max(P(Y = 0|X), P(Y = 1]X))) < 0.
Le résultat est donc démontré.

Par ailleurs, toujours en classification binaire, on note en particulier que

R*= inf P(g(X)#£Y),
¢RI—{0,1}

ot 'infimum est évalué sur toutes les fonctions de décision. Il est également
instructif de remarquer que R* = 0 si et seulement si Y = ¢*(X) P-p.s., i.e.
si et seulement si Y est une fonction borélienne de X. Dans le jargon de la
classification supervisée, les probabilités P(Y = 0|X = x) et P(Y = 1|X =
x) sont dites probabilités a posteriori.

Observons enfin que
R(g) =1-P(X)=Y)
=1-E(P(g(X) = Y|X))
= 1—E [Tgx)=17(X) + gx=o (1= (X))
En conséquence,
R*=1-E [Ilr(x)>1/2r(X) +Lyxy<1/2 (1 — r(x))} = 1—E[max(r(X),1—r(X))].

Ceci montre qu’en classification binaire
1 1

R* = E[min (r(X),1-r(X))] = 5 — 5E[2r(X) — 1],

et nous fournit donc des écritures alternatives pour R*.

L’'exemple de la classification binaire s’étend facilement au cas multi-classe,
le prédicteur de Bayes (pour la fonction de perte 0-1) vérifiant dans ce cas

¢*(x) € Argmax P(Y =m|X =x), Vxe R
me{1,...M}

10
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Exemple de la régression. Avec la perte quadratique, le prédicteur de
Bayes satisfait
g*(x) € Argmin E[(Y — 2)?|X = x].
z€R
Orona

E[(Y —2)*|X =x] = E[(Y = E(Y|X = x))}|X = x] + (z - E(Y|X = x))? +0.

Le premier terme ne dépend plus de z tandis que le second est toujours
positif et vaut 0 pour z = E(Y|X = x). On en déduit que

& (x) = E(Y[X = x),

i.e. le prédicteur de Bayes est donné par l’espérance conditionnelle de la
variable a prédire Y, c’est-a-dire la fonction de régression r elle-méme. Par
ailleurs, le risque de Bayes est 1’'espérance de la variance conditionnelle
R* =E(Y —E(Y|X))2

Probléme. Le prédicteur optimal ¢* dépend de la loi v du couple (X,Y).
Puisque cette loi est (en général) inconnue, g* et R* sont inaccessibles et il
faut alors faire appel a un échantillon i.i.d. (X1,Y1),..., (Xn, Ys), de méme
loi que (X,Y), pour espérer récupérer de l'information sur ces deux quan-
tités.

1.3 L’apprentissage et la minimisation du
risque empirique

On suppose donc a partir de maintenant que 1’on a acces a un n-échantillon
ii.d. (également appelé dans ce contexte base de données ou base d’ap-
prentissage) formé de n couples (Xi,Y7),...,(Xy, Yn) de variables aléa-
toires indépendantes entre elles, de méme loi que (X, Y) et indépendantes
de ce dernier couple. Pour abréger, on note 7, = (X1,Y1),..., (Xun, Yn).
C’est a partir de cet échantillon que l'on va s’attacher a construire un pré-
dicteur g, (x) = gn(x; Z4) a valeurs dans ) dont les performances se rap-
prochent de celles de la regle de Bayes g*. C’est le mécanisme d’appren-
tissage. Puisque les observations sont en nombre fini (1), il s’agira « d’in-
terpoler », voire « d’extrapoler » ce qui est observé pour construire notre
prédicteur.

11
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La qualité d'un prédicteur g, est mesurée par le risque (conditionnel) at-
tendu

R(g) = E(AY,80(X))|20) = [, £(0,80(x))elu(x,y).

Il convient de remarquer que, tout comme gy, le risque R(g,) est aléatoire
par l'intermédiaire de ,. Le conditionnement par %, permet de distin-
guer 1'aléatoire provenant de l'échantillon de celui issu du couple géné-
rique (X,Y). On notera au passage que ER(g,) = E(4(Y, gn(X)))-

A partir de 13, il est raisonnable de s’interroger sur le comportement du
risque attendu lorsque la taille de ’échantillon tend vers 'infini. On est en
particulier en droit d’attendre d'une « bonne regle » que son risque attendu
se rapproche de R* lorsque n croit. Comme R(g,) est aléatoire (contrai-
rement a R*), il convient de bien préciser le sens des convergences. C’est
'objet de la définition qui suit.

Définition 1. Un prédicteur g, est convergent si ER(gn) — R*. Il est fortement
convergent si R(gn) — R*, P-p.s.

Comme R(g,) > R*, on notera que la propriété ER(g,) — R* est équiva-
lente &8 R(g,) — R* dans L!(v). On pourra aussi montrer (exercice), que
la convergence dans IL!(v) équivaut dans ce cas a la convergence en proba-
bilité de R(g,) vers R*. On en déduit en particulier que si g, est fortement
convergent, il est aussi convergent.

La minimisation du risque empirique fait partie des grands paradigmes
de l'apprentissage statistique. Le principe général est le suivant. Donnons-
nous un n-échantillon ii.d. 2, = (X1, Y1), ..., (Xn, Yu) de méme loi que (et
indépendant de) (X,Y) et une famille ¢4 de prédicteurs candidats. On se
pose alors le probleme de choisir dans ¢, en utilisant Z,;, une regle particu-
liere g7, telle que R(gy) = E((Y, 85 (X))|Zn) soit proche de infecy R(g) =
infoeq E(L(Y, g(X))). (Cette derniere quantité n’est pas R*, qui lui est un
infimum sur tous les prédicteurs possibles). En d’autres termes, on cherche
a utiliser au mieux la base de données afin de sélectionner la meilleure
technique de prévision possible au sein d"une collection ¢ de regles fixée
a priori. Il peut par exemple s’agir de prédicteurs linéaires (i.e. de la forme
x — 0Tx en régression, ou qui décident 0 ou 1 selon que 1'on tombe d'un

12
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coté ou de I'autre d’un hyperplan en classification binaire), de régles poly-
nomiales (des fonctions polynomiales de la variable explicative en régres-
sion, ou qui décident 0 ou 1 en fonction du signe d'un polynéme pour la
classification binaire), mais bien d’autres exemples sont possibles.

Afin d’atteindre cet objectif, une facon naturelle de procéder consiste a
sélectionner dans ¢ une regle g;; qui minimise le risque empirique

Ralg) = 1 5(X0)

parmi tous les éléments de ¢, soit donc

g5 € Argmin R, (g).

8c%

Exemples.

1. En classification binaire, le risque empirique R, (g) = n~' Y7, Lo(x,)2v:
est le nombre d’erreurs moyen sur 1’échantillon d’apprentissage D;,.
Un minimiseur g}, est une régle qui, parmi la famille de regles consi-
dérée ¢, commet le moins d’erreurs possibles sur D,,.

2. En régression, le risque empirique R, (g) = n~' Y7 (Y; — g(X;))? est
l'erreur des moindres carrés empirique. Par exemple pour la classe
% qui est I'ensemble des applications linéaires sur R?, i.e. g(x) =
go(x) = 0Tx pour # € RY, on est ramenés au probléme de la régres-
sion linéaire (voir chapitre 6).

En rappelant que R(g;;) = E(((Y,8:(X))|Zx), on espere donc naturelle-
ment que R(g;) ~ infocy R(g). Remarquons d’emblée que

Rigi) =R = [Rigi) - ing )| + [ jnf Ri) - R

NV NV
erreur d’estimation erreur d’approximation

Cette égalité, simple mais fondamentale, montre que 1'erreur commise par
R(g}) en tant qu’estimateur de R* se décompose en deux termes, respec-
tivement appelés erreur d’estimation et erreur d’approximation. L'erreur
d’estimation est aléatoire et reflete 1’écart entre la regle sélectionnée et le
champion local dans ¢. Lerreur d’approximation est déterministe et me-
sure la proximité entre la famille ¢ et la regle optimale de Bayes.

13
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Il est facile de voir que les deux termes d’erreur varient en sens inverse
avec la taille de la classe ¢, qui doit donc étre suffisamment grande pour
que l'erreur d’approximation soit petite, mais aussi suffisamment petite
pour que l'erreur d’estimation soit contrdlée ! Pour s’en convaincre, il suffit
d’envisager la situation extréme o1 ¢ est constituée de toutes les fonctions
mesurables de R? dans ). Dans ce cas, 'erreur d’approximation est nulle,
mais l'erreur d’estimation peut étre importante, comme le montre le choix
de la regle
gZ(x)Z{ Yi S%XZXl', 1§i§ﬂ

0 sinon,

dont le risque empirique est nul! (En effet, cette regle impose gj(x) = 0
pour tout x différent des données Xi, ..., X;). Ce phénomene indésirable,
qui traduit une accroche trop importante aux données, est appelé sur-
apprentissage (« overfitting » en anglais) et nous donnerons dans la suite
des conditions précises sur & permettant de l’éviter. A partir de mainte-
nant, nous supposons donc la classe ¢ fixée une fois pour toutes et cher-
chons a controler le terme d’estimation.

Lemme 1. Un prédicteur g, minimisant le risque empirique sur la classe & vérifie
(i) R(g) —infeey R(8) < 2sup ey [Ru(g) — R(3)|
(i) [Rn(gn) — R(gH)| < supgey [Rn(g) — R(S)].

Démonstration. Le point (i) est une borne de l'erreur d’estimation du pré-
dicteur. En introduisant le risque empirique de ce prédicteur, on écrit

R(gy) — inf R(g) < |R(gy) — Ru(gy)| + |Ru(gyy) — inf R(g)]-
8c¥y 9€9

Clairement,

IR(83) — Ru(gh)| < sup |Ru(g) — R(8)
g€9

et par définition de g,

[Rn(gs) — inf R(g)] = | inf Run(g) — inf R(g)] < up [Ra(8) = R(3)|-

(La derniere inégalité provient de la définition de inf et de sup.) Cela
prouve la premiere assertion. La preuve de la seconde est immédiate. [J

14



Chapitre 1 Introduction a I'apprentissage supervisé

Le Lemme 1 montre qu’en contrélant la quantité sup,., 1Ru(g) — R(3)|,
on fait coup double, puisque 1'on maitrise non seulement la sous-optimalité
de g; dans ¢ vis-a-vis du vrai risque R, mais aussi l'erreur |R,(g}) —
R(g%)| commise lorsque R, (g)) est utilisée pour estimer R(g}), le véri-
table risque du prédicteur sélectionné. Il est donc désormais légitime de
faire porter nos efforts sur I'analyse du terme sup,., Rn(g) — R(g)|. His-
toriquement, dans le probleme de classification supervisée, la théorie de
Vapnik-Chervonenkis a eu une influence considérable et nous allons la
présenter dans le chapitre suivant. Pour la motiver, nous commencgons sim-
plement, en examinant le cas ou la classe de fonctions ¢ a un cardinal
fini.

1.4 Cas de la classification binaire et d’'une
classe de cardinal fini

Dorénavant, nous considérons le probleme de la classification binaire, avec
Y = {0,1}, la fonction de perte 0-1 donnée par {(y,z) = 1., et le risque
empirique R, (g) = n~' Y1, Lo(x,)+y,- (Le label est supposé binaire pour
simplifier mais la théorie s’étend sans trop de difficultés au cas multi-
labels).

Commencons par rappeler I'inégalité de Hoeffding.

Théoreme 1 (INEGALITE DE HOEFFDING). Soit Z4,...,Z, des variables aléa-
toires réelles indépendantes telles que a; < Z; < b;, P-p.s. (a; < b;). Alors, pour

tout ¢ > 0,
2¢? )
>e| <2ex — .
( )- p( (b — a;)?

En particulier, si Z désigne une variable aléatoire de loi binomiale %(n, p),
alors, pour tout € > 0,

n

Y (Zi —EZ;)

i=1

z_ = — . 2.2 L . —Dne2
]P(‘n P‘Ze)—]l’ﬂz np|>ne))§2exp< zng/;1>_ze .

15
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En remarquant que pour un prédicteur fixé g (non aléatoire), la quantité
n n

nRu(g) = Zﬁ Y, g(X leg

i=1 i=1

suit une loi A(n, R(g)), on en conclut que
P (|7A€n(g) — R(g)| >¢) < 26_2”82,

ce qui conduit au premier résultat fondamental suivant :

Théoréeme 2. Supposons que la classe ¢ soit de cardinal fini majoré par N. Alors,
pour tout € > 0,

1P<sup IRu(g) —R(g)| > e) < 2Ne 27, (1.3)
gc¥

I faut noter que cette inégalité est déja remarquable car la majoration de la
probabilité est universelle, au sens ot1 elle ne dépend pas de la loi du couple
(X,Y). On en déduit en particulier, en utilisant le lemme de Borel-Cantelli,
que

%(8) ~R(g)| =0, P-ps.

8€¥
et donc, d’apres le Lemme 1, que

R(g,) — inf R(g) —» 0, P-p.s.

8€¥

Ce résultat signifie que pourvu que la classe G soit de cardinal fini, 1’er-
reur d’estimation pour la classification tend p.s. vers 0 lorsque n tend vers
I'infini; en d’autres termes, 'apprentissage est asymptotiquement optimal.
Tout ceci s’étend sans difficulté au controle de I'espérance E(sup ¢ [Rn(8) —
R(g)|), via le lemme technique suivant.

Lemme 2. Soit Z une variable aléatoire a valeurs dans R .. Supposons qu'il existe
une constante C > 1 telle que, pour tout € > 0,

P(Z >¢) < Ce 2,

Alors

EZ < log(Ce) .
2n
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Chapitre 1 Introduction a I'apprentissage supervisé
Démonstration. En partant de 1'identité
—+00
EZ? = / IP(Z? > €)de,
0
on a, pour tout u > 0,
u —+00
EZ? = / P(Z% > s)ds+/ P(Z% > ¢)de
0 u

— /MIP(Z2 > s)ds+/+oolP(Z > \/e)de
0 u

—+00
<u+4+C e~ 2 de

Avec le choix u* = Ozinc (qui minimise la borne de droite), on en déduit

que EZ2 < lzinc + 4 = %, d’ot1 le résultat par I'inégalité de Cauchy-

Schwarz. ]

Le lemme précédent, couplé a I'inégalité (1.3), montre que

E(Ztelg Ru(g) — R(8)\> < %-

Le Lemme 1 nous permet alors de conclure que

o log(2¢eN)
_ < o\ v/
ER(gn) = inf R(g) < 2¢/ == —,

ce qui montre que, pour une classe ¢ de cardinal fini, I'espérance de l'er-
reur d’estimation reste sous controle (avec une borne plus ou moins grande
selon sa taille N) et tend vers 0 a la vitesse 1/+/n lorsque n tend vers l'infini.

Néanmoins, lorsque ¢ n’est pas de cardinal fini (comme c’est le cas dans
la plupart des problemes intéressants), I’approche que nous venons de pré-
senter ne fonctionne plus et il faut trouver de nouveaux outils pour appré-
hender la « taille » de . C’est I'objet du chapitre suivant, qui présente la
théorie de Vapnik-Chervonenkis.

17



Chapitre 2

Théorie de Vapnik-Chervonenkis
pour la classification

Dans tout ce chapitre, on considere le probléme de la classification super-
visée : le couple (X,Y) est a valeurs dans R? x ) o1 Y est fini. Par souci
de simplification, on choisit de présenter uniquement le cas ) = {0,1}. La
fonction de perte est le cotit 0-1.

2.1 Passage du SUP,cq AU SUP

Etant donné un n-échantillon i.i.d. 2, = (X1,Y1),...,(Xy, Ys) de méme loi
que (et indépendant de) (X,Y) € R? x ) et une famille ¢ de régles de
décision candidates, le chapitre précédent a montré le role essentiel joué
par le terme sup, ., |Rn(g) — R(g)|, qu'il faut donc apprendre a controler
avec la plus grande généralité possible.

On rappelle que v désigne la loi du couple (X, Y) et on note v, la mesure
empirique associée a 7, i.e., pour tout A € %’(IR”I x {0,1}),

1 n
vn(A) = ” Z]I(Xi,Yi)eA-
i=1

A une régle de décision quelconque g € ¢, nous pouvons associer le boré-
lien
Ag={(xy) € R x {0,1} : g(x) £y}

En utilisant cette notation, il est alors facile de voir que, d"une part,

R(8) =P(g(X) #Y) = v(Ay)

18



Chapitre 2 Théorie de Vapnik-Chervonenkis pour la classification

et, d’autre part, que

Rau(g) =

S|

Lo(xy 2y, = vn(Ag)-

n
i=1

On constate ainsi que

{325 Ra() ()| b = { sup fua(a) - )]},

Acg/

ol, par définition, o7 = {A, : g € 4}. Ce jeu d’écriture nous montre donc
que pour analyser le comportement probabiliste du terme sup, Rn(g) —
R(g)|, il faut avant tout comprendre comment se comporte la déviation
maximale de la mesure empirique v, par rapport a la vraie mesure v, sur
une classe d’ensembles mesurables &/ donnée. On peut d’ores et déja ob-
server que, pour un ensemble A fixé,

vy (A) —v(A)] — 0, P-ps.

d’apres la loi des grands nombres. D’autre part, si le cardinal de . est fini
et majoré par N, un raisonnement similaire a celui du Théoreme 2 nous
apprend que, pour tout € > 0,

11)( sup [va(A) —v(A)| > e> < 2Ne 2, 2.1)
Acd/

d’ot1 'on déduit (lemme de Borel-Cantelli) que, pour toute loi v,

sup |va(A) —v(A)| — 0, P-ps.
Aco/

En revanche, si la classe &/ est trop grande, ce comportement n’est plus
assuré. On s’en convaincra facilement en remarquant que si ./ désigne
'ensemble de tous les boréliens de R? x {0, 1}, alors on peut trouver des
lois v telles que

sup |va(A) —v(A)| =1, P-ps.

Acd
Il suffit de prendre v = p ® (1/25p + 1/261) ol p est une loi absolument
continue par rapport a la mesure de Lebesgue sur R¥ (par exemple la loi
d’un vecteur gaussien a densité). Prenons ensuite pour w fixé I’ensemble
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Chapitre 2 Théorie de Vapnik-Chervonenkis pour la classification

A(w) = (RY x {0,1}) \ {(Xl(w),Yl(w)),..., (Xn(w),Yn(w))}.Alors vp(Alw)) =
0 mais v(A(w)) = 1 donc sup ., |[vu(A) —v(A)| = 1.

La conclusion de tout ceci est qu’il faut parvenir, d'une maniere ou d’une
autre, a controdler la « taille » de la classe d’ensembles .«7. Pour atteindre cet
objectif, il convient au préalable d’introduire quelques outils combinatoires
nouveaux.

2.2 Théoreme de Vapnik-Chervonenkis

Soit &7 une famille de sous-ensembles de IR¥, de cardinal (pas nécessaire-
ment fini) strictement supérieur a 1 (cette hypothese sera implicite dans
la suite). Etant donné n points zj,...,z, de RF, on définit la quantité
Ny (z1,...,2z0) par

Ny (z1,.-zn) = [{{z1,..., 2z} NA: A€ F}.

En d’autres termes, N,y (z1, . . ., z,) représente le nombre de sous-ensembles
de {z1,...,2zx} que l'on peut obtenir en intersectant ces n points par les
ensembles de /. Bien entendu, on a toujours N (z1,...,2,) < 2", et
lorsque N/ (z1,...,24) = 2", on dit que la classe </ pulvérise I’ensemble
{z1,...,zn}. Afin de ne pas étre géné par le choix arbitraire de z, ..., zy,,
on pose
S,y(n)=max Ny(z1,...,z
427( ) (212 ERP" 42%( 1 n)

et on appelle cet indice le coefficient de pulvérisation de n points par la
classe <.

Clairement, S/ (n) < 2". D’autre part, S./(1) = 2 (pourquoi?) et si 'on a
S/ (k) < 2¥ pour un certain entier k > 1 alors S, (n) < 2" pour tout n > k
(pourquoi?). Il est donc naturel de s’interroger sur 1'existence d’un plus
grand entier n tel que S,/ (n) = 2". C’est 'objet de la définition suivante.

Définition 2. Soit .o/ une famille de sous-ensembles de IRF. On appelle dimension
de Vapnik-Chervonenkis de </, notée V., le plus grand entier ng > 1 tel que
S/ (ng) = 2".5i S,/ (n) = 2" pour tout n > 1, on pose V7 = +o0.
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Chapitre 2 Théorie de Vapnik-Chervonenkis pour la classification

La dimension de Vapnik-Chervonenkis mesure, en un certain sens, la « taille »
(la « dimension » ) de la famille &/ et généralise ainsi la notion de cardinal.
I1 s’agit d"un concept combinatoire important qui, comme nous le verrons
dans la suite, joue un role clé dans la théorie de I'apprentissage statistique.
Examinons auparavant quelques exemples (les preuves sont de difficultés
variées et laissées au lecteur).

Exemples.

1. Supposons || < oo. Dans ce cas, S./(n) < |</|. D’autre part, par
définition de V,,, on a S,/ (V) = 2V, d’oti 'on déduit que

Ve <log, ||

2. En dimension p =1, si & = {(—o0,a] : a € R}, alors S/ (n) =n+ 1.
En effet, si on a n points, x; < x < ... < x5, on peut obtenir
tous les sous-ensembles de points consécutifs a partir du premier
point : @, {x1}, {x1, x2}, {x1,x2, x3,..}, ..., {x1,x2,..., X, } en intersec-
tant avec .7 et seulement ceux-ci. Comme S, (1) =2etS,(2) =3 <

4, on obtient V, = 1.

Si o = {[a,b] : (a,b) € R?}, alors S/ (n) = @ + 1. En effet,
en intersectant n points avec des segments, on pourra obtenir n en-
sembles de un seul point; n — 1 ensembles de 2 points qui doivent
étre consécutifs ({x1,x2}, {x2, 23}, ..., {xn_1,xn}); n — 2 ensembles de
3 points qui doivent aussi étre consécutifs ({x1,x2, x3}, {x2, x3, x4},
coo{xn—2,%y-1,%x1});- - - ;2 ensembles de n — 1 points ({x1, ..., x,-1},
{x2,...,x,}) et un ensemble de tous les n points. N'oublions pas l'en-
semble vide qu'il est aussi possible d’obtenir en intersectant avec un
segment qui ne contient aucun de ces 1 points. Il est facile de voir que
nous ne pourrons obtenir aucun ensemble de points avec des « trous »
, C'est-a-dire qui contient par exemple x; et x;, mais pas x;;1 pour un
i=23...,n—1.0ncomptedonc Sy (n) = (1+2+---+n)+1=
n(n+1)/2+1. Comme S(2) = 4 = 2> mais S,(3) = 7 < 23, on
obtient V, = 2.
3. Soit p = 2. Si

o = {(~o0,a1] x (~0,02] : (a1,02) € R},

alors V,; = 2. En effet pour n = 2, il est facile d’obtenir les 4 sous-
ensembles de points de {z; = (1,0),z, = (0,1) } en prenant (a1,a;) =
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(0,0),(1,0),(0,1) et (1,1) dans la définition de A. Donc V., > 2.
Lorsque n = 3, soient (x1, 1), (x2,¥2), (x3,y3) trois points quelconques

de R2. On peut choisir un sous-ensemble de deux points parmi ceux-

ci tels que le maximum de coordonnées x1, x7, x3 est atteint sur une

de leurs deux abssisses et le maximum de coordonnées 1,7, y3 est
atteint sur une de leurs deux ordonnées. Alors tout ensemble A qui
contient ce sous-ensemble de 2 points doit contenir aussi le 3eme
point car ses deux coordonnées sont inférieures ou égales a max(xy, xp, x3)
et min(y1,y2, y3) respectivement. Alors S/ (3) < 23 et donc V,; = 2.

Si o = {rectangles de R?}, alors V,, = 4. En effet, lorsque n = 2,
nous pouvons obtenir tous les sous-ensembles de {z; = (1,0),z, =
(0,1),z3 = (0,—1),z4 = (—1,0)} par intersections avec des rectangles.
Par contre si on prend 5 points quelconques, on ne peut pas obtenir
tous les sous-ensembles : un rectangle A qui contient 4 points avec les
premieéres et deuxiémes coordonnées maximales et minimales, doit
contenir obligatoirement le 5eme point qui reste (faire un dessin!).

. En dimension p quelconque, si

of — {(—Oo,al] X oo X (—OO,IZP] : (al,...,ap) E]Rp},

alors V,; = p. Si & = {rectangles de R}, alors V,; = 2p. La preuve
qui généralise le cas p = 2 est laissée en exercice.

. En revanche, pour &/ = {polygones convexes de R?}, on a V,, =
+oo. En effet, pour tout n > 1, si on considére n points sur un
cercle, on pourra obtenir n’importe lequel des 2" sous-ensembles de
ces points en intersectant avec des polygones convexes.

. (Important.) Soit .# un espace vectoriel de fonctions de R? — R, de
dimension finie dim(.%). Alors, si

o ={{xeRV:f(x)>0}:feF}
ona V., <dim(%).

Soit dim(.#) = m. Prenons x1,...,Xxy1, des points quelconques de

R?. Considérons I'application linéaire L : .# — R™*! définie par

L(f) = (f(x1), f(x2),..., f(xp+1)). Comme dim(.#) = m, alors dim L(.%#) <
m et donc il existe un vecteur non-nul y = (71,..., Yms1) € R™ or-
thogonal a L(.%). Donc pour tout f € .7 :

Y1f(x1) + vaf (x2) + -+ - + Y1 f (Xpy1) = 0.
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Comme 7 est non nul, quitte a le multiplier par (—1), on peut dire
que {i:v; <0} # @. Alors

Y vif(xi) ==Y 7if(xi). (2.2)

iry; >0 i:y;<0

(La somme a gauche peut étre vide de termes, mais la somme a droite
est non-vide de termes). Montrons qu’il est impossible d’obtenir un
sous-ensemble de points {x; : 7; > 0}. En effet si pour une certaine
fonction f : f(x;) > 0 pour tout i tel que 7; > 0 et f(x;) < 0 pour
tout i tel que ; < 0, alors la partie droite dans (2.2) est supérieure ou
égale a zéro alors que la partie gauche est strictement négative, ce qui
est impossible. Donc S, (m +1) < 2" et donc V,, < m.

7. En particulier, si &/ désigne la famille des 1/2-espaces linéaires, i.e.
les sous-ensembles de R” de la forme {x € R? : aTx +b > 0} pour
a € RP,b € R, il vient V,; < p+ 1. En effet I'espace ¥ = {x —
aTx+0b:a € RF,b e R} estde dimension p + 1.

Nous sommes désormais équipés pour énoncer le théoreme fondamental
suivant, appelé théoréme de Vapnik-Chervonendkis.

Théoréme 3 (VAPNIK-CHERVONENKIS). Soit Z1,...,7Z, des variables aléatoires
indépendantes, de méme loi v sur RP, et soit v, la mesure empirique correspon-
dante. Alors, pour toute famille borélienne o/ C IR et pour tout e > 0, on a

]P( sup |vu(A) —v(A)| > e) < gsd(n)e—ném.
Acd

Avant de prouver ce théoreme, il convient de souligner quelques points
essentiels.

1. La borne est universelle, dans le sens ot elle ne dépend pas de la loi
particuliere v.

2. Ce résultat généralise 1'inégalité (2.1) qui n’était valable que pour une
classe <7 de cardinal fini. Grosso modo, le cardinal de %7 est remplacé
par le coefficient de pulvérisation.

3. D’apres le lemme de Borel-Cantellj, il s’ensuit que

sup |vn(A) —v(A)| — 0, P-ps.
Acg
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deés que la série de terme général Sﬂ(n)e’”gz/ 32 est sommable. C’est

par exemple le cas si |«7| < oo ou si S/ (1) est un polyndme en n. En
revanche, il est impossible de conclure si S o (n) =2" pour tout n (ou,
c’est équivalent, si V,; = 4-00).

4. La preuve du Théoréme 3 n’est pas compliquée et repose sur quelques
arguments clés que l'on rencontre fréquemment en théorie de l'ap-
prentissage. En un mot, le principe consiste a faire sortir le supremum
de la parenthése pour le placer devant la probabilité. Ce grand saut
est effectué en jouant sur les propriétés combinatoires de la classe &/
telles que décrites par S/ (n).

Démonstration du Théoreme 3. Dans toute la preuve, on suppose ¢ > 0 fixé
et on choisit # assez grand de sorte que ne®> > 2. Dans le cas contraire, il est
facile de voir que le résultat annoncé est correct car la borne du théoréeme
est alors plus grande que 1. La preuve s’organise en 4 étapes.

Etape 1 : Symétrisation. En sus du n-échantillon i.i.d. original Zj,...,Z,,
on consideére un second échantillon i.i.d. Z7, ..., Z;, de la loi v, indépendant
du premier. On note v, la mesure empirique relative a Z1, ..., Z, et v, celle
relative a Z}, ..., Z,. La premiére étape consiste a montrer que
]P( sup |vu(A) —v(A)| > s) < ZIP( sup |[va(A) — v, (A)] > %)
Acg Acg

Pour tout w € QO tel que sup, ., [va(A) —v(A)| > € choisissons un en-
semble A* = A*(w) (dépendant de 1’échantillon initial Z, ..., Z,) tel que
[Un(A*) —v(A*)| > €. Pour tout w € O tel que sup o, [va(A) —v(A)| < ¢,
posons A* = IRP. Dans ce cas |v,(A*) —v(A*)| = |1 — 1| = 0. Autrement
dit,

{w € sup v (A) — v(A)| > e} = {w € Q' [up(A*) — v(A%)| > e}.
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Par ailleurs,

H’(zgg{\vn(A)—vz(A)l > §>

:E(P(jg};}vn(A) —V,Q(A)‘ > % ‘ Zl,...,Zn))

> IE(]P( va(A%) — v (A)] > % ( Zl,...,Zn>)
N €
= 1P< [un(A*) — vy (A%)] > E)
On en déduit, en utilisant 1'inégalité triangulaire et la définition de A*, que

“’(j‘;};'vn("‘) —vy(A)] > %)

> P({ [un(4") = v(a)] > eh 0 { ju(47) = v(a")| < ;})
=E <]]‘|VH(A*)—1/(A*)|>S]P( }V,CL(A*) — V(A*)| <e/2 ‘ Z1,.. ,Zn)) .
L'inégalité de Bienaymé-Tchebytchev montre que
P( [vy(4%) —v(a")| < ; ‘ Zi,ee ) Z)

IE( (V) (A*) — v(A*))? ]zl,...,zn)

>1—
- e2/4

En observant que, conditionnellement & Z1, ..., Z,, la variable nv,,(A*) suit
une loi #(n,v(A*)), on en déduit en particulier que

V(v (A*)|Z4, ..., Zy)

P( [v(4%) —v(a*)| < s/z‘zl,...,zn) >1-

e2/4
L v(A)(—v(AY)
ne2/4
1
Z ]- - @/
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car sup,, o ] u(l—u) =1/4. Ainsi, puisque ne > 2,

P( sup [vn(A) —v;(A)] > ¢/2) Zm(ﬂwmﬂvmﬂl»(l‘ : >>

A€ot ne2

1P( v (A%) — V(A%)] > g)

- 119(21615{ U (A) — v(A)] > e).

On en conclut bien que

]P(Zlég\vn(A) —v(A)| > S) < 2113(225{ v (A) — vy (A)] > %)

Etape 2 : Signes aléatoires. On se donne maintenant n variables aléatoires
oy, ..,04, indépendantes et chacune de loi de Rademacher, i.e. telles que
P(o; = —1) = P(0; = +1) = 1/2. On suppose en outre que les variables
01,...,0y sont indépendantes de Zy,...,Z,, Z,...,Z;. 1l est alors facile de
voir que

nsup |vu(A) —v,(A)| = sup
Acd Aed |

a méme loi que

sup i(Ti (ﬂA(Zi) —ﬂA(ZZ{)) ‘
Acd ' i=1

En effet, si une variable aléatoire U est de loi symétrique et une variable
o est indépendante de U a valeurs £1 avec probabilités 1/2, alors cU est
de méme loi que U : pour tout B borélien P(cU € B) = 1/2P(U € B) +
1/2P(-U € B) = 1/2P(U € B)+1/2P(U € B) = P(U € B). Si des
variables aléatoires Uy, ..., Uy, 01,...,0, sont indépendantes, les U; étant
toutes de méme loi symétrique, et les o; étant de méme loi que ¢ pour
i=1,...,n,alors oqUy,...,0,U, sont indépendantes et de méme loi que
U. Il reste a remarquer que 14(Z;) — 14(Z}) sont de loi symétrique car Z;
et Z! sont indépendantes et de méme loi.

Des lors, en utilisant le résultat de la premiere étape, nous pouvons écrire
que

n

P(sup Jun(4) —v(4)] > ¢) < 2P (sup LY o (1a(2) ~14(ZD) | > 3),
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et donc (par symétrie de la loi)

14(Z

P(3ep )80 > ) <4p(sup 1]

> 1)
4
Etape 3 : Le saut du sup. En poursuivant le calcul précédent, on a

H’(Zgg vy (A) —v(A)| > s)

14(Z

>Z‘Zl,...,Zn>).

< 4E ( sup
Aca T

Majorons alors le terme

Z O—ZIIA

§IP<E|AE%:E

<sup >Z‘Z1,...,Zn)

Aca T

14(Z))

&
>L—le,...,zn>.

Une fois fixés les points zy,...,z,4, le vecteur (14(z1),...,14(2zn)) prend
Ny(z1,...,2zn) valeurs distinctes lorsque A varie dans 7, soit donc un
maximum de S, (n) valeurs. Du coup,

14(Z

(sup >Z‘Z1,...,Zn>

Aca 1

g]P(HAE%:E 14(Z:)

&
>Z‘Z1,...,Zn>,

ol % est un ensemble fini (dépendant de Z;, ..., Z,) de cardinal au plus
S./(n). 1l s’ensuit que

P(su Z"zﬂA 4121' %)
AEZQ{]P( ﬂA 4’21/ -an>
< S (n) sup]P( ZO,HA 4‘Z1, -/Zn>

Acd
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On notera ici le saut du sup de l'intérieur vers l'extérieur de la probabilité,
accompli grace a l'introduction du coefficient de pulvérisation. Ainsi,

]P<fsllelff lvn(A) —v(A)| > s)

< 45%(”)153(

sup ]P(% > 2‘21,...,211)). (2.3)

Ace/

n
Y oilla(Z;)
i—1

Etape 4 : Inégalité de Hoeffding et conclusion. Conditionnellement a
Zy,...,2Zy, la variable aléatoire )} ; 014(Z;) est la somme de n variables
aléatoires indépendantes, centrées (c’est la que les signes aléatoires jouent
un role primordial!) et comprises entre —1 et 1. Ainsi, d’apres l'inégalité
de Hoeffding (Théoreme 1)

r(;

n
Y oila(Z;)
i=1

> i)zl,...,zn) — ]P(

n
Y oilla(Z;)
i1

< Dp2m* /(£ (1=(-1))*n) _ 5,—ne?/32.

ne
>ﬂzl,...,zn>

On conclut alors en utilisant (2.3) que

]P< sup |vu(A) —v(A)| > s) < SSﬂ(n)e—nsz/&,

Acd
ce qui est bien le résultat annoncé. O]
Application : théoréeme de Glivenko-Cantelli. Placons-nous sur la droite

réelle et considérons un n-échantillon Zy,...,7Z, de variables aléatoires
i.i.d., de loi commune v. En prenant o = {(—o9,z] : z € R}, il est facile de
voir que, pour tout A = (—o0,z] € &/, ona v(A) = F(z) et v,(A) = Fu(z),
ou F (respectivement F;) est la fonction de répartition associée a la loi v
(respectivement, la fonction de répartition empirique associée a Zj, ..., Z;).
D’autre part, nous avons vu ci-dessus (exemple 2) que S, (n) = n+ 1.
Ainsi, en utilisant le théoreme de Vapnik-Chervonenkis, on montre que

P(igﬂg IEy(z) — E(z)| > s) - ]P<§1§§ va(A) — v(A)| > s)

< 8(n+1)e /32,

28



Chapitre 2 Théorie de Vapnik-Chervonenkis pour la classification

Le lemme de Borel-Cantelli implique alors que

sup |F,(z) — F(z)| =0, P-ps.,
z€R

c’est-a-dire que la fonction de répartition empirique converge presque si-
rement vers la fonction de répartition, au sens de la convergence uni-
forme des fonctions. Ce résultat remarquable porte le nom de théoréme
de Glivenko-Cantelli. Il permet d’approximer la fonction de répartition in-
connue F par la fonction de repartition empirique F,.

Avant de tirer les conséquences du Théoreme 3 pour la théorie de l'ap-
prentissage, il convient de préciser quelques propriétés élémentaires de la
dimension de Vapnik-Chervonenkis.

2.3 Aspects combinatoires

Nous admettrons le résultat combinatoire suivant (la preuve se fait par
récurrence), connu sous le nom de lemme de Sauer :

Théoréme 4 (LEMME DE SAUER). Soit &/ une famille d’ensembles admettant une
dimension de Vapnik-Chervonenkis finie V,,. Alors, pour tout n > 1,

S (n) < :/é (:l)

Dans la suite, c’est surtout le corollaire suivant qui nous sera utile :

Corollaire 1. Soit <7 une famille d’ensembles admettant une dimension de Vapnik-
Chervonenkis finie V. Alors, pour tout n > 1,

S.(n) < (n+1)V.
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Démonstration. On a

Vd ni

o

> lvé (7) > S.y(n),

ou la derniére minoration provient du Lemme de Sauer. O

On déduit en particulier du corollaire précédent qu'un coefficient de pul-
vérisation tombe forcément dans 1'une des deux catégories suivantes :

> Ou bien V,; = +o0 et dans ce cas S,/ (n) = 2" pour tout n > 1.
> Ou bien V,, < co et dans ce cas S/ (n) < (n+1)V.

On ne peut donc jamais avoir des situations intermédiaires, comme par
exemple S,/ (n) ~ 2V,

Enfin, en combinant le théoreme de Vapnik-Chervonenkis, le Lemme tech-
nique 2 et le Corollaire 1, on conclut que pour toute famille d’ensembles
mesurables </ de R admettant une dimension de Vapnik-Chervonenkis
finie V,

]P( sup |va(A) — v(A)| > Se) < 8S,,(n)e ¢
Aced

et donc (par le Lemme 2)

IN

log (8¢S (1))
8\/ ZnM

\/V%log(n +1)+4
8
2n

:o(\/@>

I1 est a noter qu’il est possible de se débarrasser du terme logarithmique
en utilisant des techniques dites de chainage, dont la présentation dépasse
le cadre de ce cours.

1E< sup [va(A) —I/(A)|)

Acg

IN
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2.4 Application a la minimisation du risque
empirique

Nous pouvons a présent peaufiner les bornes sur l'erreur d’estimation dans
le probleme de classification supervisée. Rappelons, pour mémoire, que
I'on consideére un n-échantillon iid. 2, = (X1,Y1),...,(Xy, Y,) de méme
loi que (et indépendant de) (X,Y) € R? x ) et une famille ¢ de régles de
décision candidates. En désignant par g, un minimiseur du risque empi-
rique dans ¢, nous savons que, d'une part,

R(gn) — gig;; R(g) < 2sup |Ru(g) — R(Q)|
8€Y

et d’autre part,

Lsup Rutg) ~Rig)| b = { sup () —vial |,

gc% Aco/

otl, par définition, &7 = {Ag: ¢ € ¥}, avec

Ag={(xy) eRTx {01} :g(x) £y}

Il est alors clair, de par le théoréme de Vapnik-Chervonenkis, que le coeffi-
cient de pulvérisation S, (1) va jouer un role fondamental dans le controle
du terme sup, .y Rn(g) — R(g)|. Néanmoins, la classe o7, composée de

sous-ensembles de R¥ x {0, 1}, revét une structure un peu complexe qui ne
se préte pas bien a l’analyse combinatoire. Fort heureusement, les choses
se simplifient grace a la proposition suivante.

Proposition 2. Soit o = {Ag: g€ Y} et o/ = {{xeR?: g(x) =1}:g¢€
¢}. Alors, pour tout n >1, S ;(n) = S/ (n). En particulier, V. ; = V.

Démonstration. Nous allons montrer que pour tous z1,...,2z, € R? et tous
e1,...,en € {0,1} fixés,

\No((z1,e1),(z2,€2), .., (zn,en))| = IN (21,22, ... 20)]. (2.4)

Sans perte de généralité, on va supposer pour simplifier les notations que
egp = 0,e0 =0,...,6 = 0,e,11 = 1,...,e, = 1. On note les premieres
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coordonnées par Vi = (z1,...,2¢) et Wy = (2k11,...,2n). Soit ¢ € 9.
Alors l'intersection de Ag avec {(z1,e1),(z2,€2) ... (zn,€,)} donne un pre-
mier sous-ensemble de points parmi {(z1,€1), (z2,€2),..., (zx, €) } tels que
¢(z;) = 1 (notons le sous-ensemble de leurs premieres coordonnées par

Q¢ C Vi) et un second sous-ensemble de points parmi {(zx41,€x+1),-- -, (Zn, €n)}
tels que g(z;) = 0 (notons le sous-ensemble de leurs premieres coordonnées

par Ry C W,_j). Alors l'intersection de A, = {x € R? : g(x) = 1} avec
{z1,...,zn} vaut Qg U (W, \ Ry).

Remarquons que [N ((z1,e1), (22,€2), ..., (zn,en))| = [{QgURg : g € 9}
et que [N 7(z1,22,...20)| = [{Qq U (Wy_k \ Qg) : g € ¥}|. Mais le nombre
d’ensembles différents Qg U R associés a toutes les fonctions ¢ € ¢ est le
méme que le nombre d’ensembles différents Qg U (W, _¢ \ Rg) associés a
toutes les fonctions ¢ € ¢. Autrement dit [{Q; UR; : ¢ € 4}| = |{Qq U
(Wi \ Qg) : § € 9} Eneffet : Qo) URg, = Qq, URy, ssi Qg U (Wy_i \
Qg) = Qg U (Wy—i \ Qy,). L'égalité (2.4) est démontrée. O

Nous sommes désormais en mesure d’énoncer le principal résultat de ce
chapitre, dont la preuve découle du Lemme 1, du théoréme de Vapnik-

Chervonenkis (et du Lemme technique 2 pour la seconde assertion).

Théoréme 5. Soit V ; < co. On a, pour tout n > 1,

]P(!R(gﬁ) — inf R(g)| > s) < SSM-(n)e_”gz/lzs.

g9
En outre,
o log (8eS (1))
— < < .
ER(g,) gug;R(g) < 16\/ o

Démonstration. Par le Lemme 1,

0> R(gy) — inf R(g) < 2sup|Ru(g) — R(8)]
8§cY €Y

donc par le Théoréme 3 et la Proposition 2,

P(|R(gh) — inf R(g)| > ) < P(Z‘ég Ra(8) = R(2)] > 5)

< SSM—(n)e_”SZ/(ZZX”).
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D’apres le lemme de Borel-Cantelli, il suit de ce résultat que

R(gy) — inf R(g) -0, P-p.s.
8€Y

dés que la série de terme général S d—(n)e_”ez/ 128 st sommable. Or, d’apres
le Corollaire 1, c’est précisément le cas des que V_; (ou V) est finie puis-
qu’alors S_7(n) a une croissance au plus polynomiale en n. On retiendra
donc de tout ceci que la condition V; < oo est suffisante pour assurer la

convergence presque stire du terme d’estimation vers 0. Dans ce cas,

lP(‘R(gZ) — inf R(g)| > 248) < 8S_7(n) exp(—2ne?)
gc¥ ’

d’ot1 par le Lemme 2,

ER(g%) — ig{ng(g) < 16\/10g(8628f(n)) < 16\/10g(8€) + Vd—log(n+1)’
8

2n
o B V logn
ER(g7) ;g;R(g)—O<\/—n )

autrement dit

Exemples.

1. Classification linéaire. En notant x = (x(l),...,x(d)), on considere
des regles de classification trés simples, de la forme

iyd g.()
0 sinon,

ot (ag,ai,...,a;) € R est un parametre vectoriel. Chaque fonc-
tion ¢ de ce type subdivise I’espace R¥ en deux demi-espaces par la
droite 27:1 ajx(]) + ag = 0. Pour la variable X on attribue Y = 1si X

tombe dans le demi-plan « positif », i.e. 2}121 a]-X(j) +ap>0,etY =0

si X tombe dans le demi-plan « négatif » i.e. Z;-izl an(j) +ap < 0.
L’ensemble G est bien sur infini mais de dimension finie.
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Dans ce cas,
o C {{xe]Rd:aTerao >0} :aeR%a E]R}

et, d’apres les propriétés de la dimension de Vapnik-Chervonenkis
vues plus haut, ona V; < d + 1 (voir exemple 6 ci-dessus). Ainsi le
Théoreme de Vapnik-Chervonenkis s’applique,

* . 2
H’(W(gn) —glggng(gﬂ > s) < 8(n + 1)dH1ene/128

et
R(g,) — inf R(g) =+ 0, P-p.s.
8€¥
En pratique, ce théoréme nous recommande de chercher g qui mini-
mise le risque empirique et nous montre que son erreur d’estimation
est tres proche de 'erreur d’estimation optimale sur ¢.

Pour obtenir g%, on peut visualiser dans l'espace RY les données
Xj,..., Xy en les coloriant avec deux couleurs : X; en rouge si Y; =1
et X; en bleu si Y; = 0. On cherche un hyperplan 27:1 a}*x(j) +ay;=0
qui divise R? en deux demi-espaces : celui 2?21 a]’.”x(j) +aj > 0 conte-
nant le maximum de points rouges, 1'autre contenant le maximum
d points bleus. La fonction g (X) = 127:1 a2 x0) +a3>0(X) sera alors la
fonction minimisant le risque empirique.

. Classification par des boules fermées. La classe ¢ est composée de
toutes les indicatrices des boules fermées de IR?. Ainsi, la fonction de
décision g(x) est 'indicatrice de n’importe quelle boule By, i.e. pour
la donnée X on attribue Y = 1 si X est a 'intérieur de Bg et Y = 0
sinon. Dans ce cas,

d
7 _ d. ' 2 . d+1
;zf—{{xelR .]§|x(7)—a]~| gao}.(ao,al,...,ad)ER+ }

En remarquant que

d
a— ) |x() — ajl> =a9— Y (x(]'))2 +2 Zx(j)aj — Za]z,
= '
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on voit que &/ est inclus dans une famille d’ensembles de la forme
{{x € R?: f(x) >0} : f € F}, oit F est un espace vectoriel de di-
mension d + 2. En effet, c’est un espace avec les fonctions 1, x(l), x(z),
o x @), 27:1 (x())2 formant une base. On conclut comme précédem-
ment que

R(gy) — inf R(g) — 0, P-p.s.
gcY9

En pratique, pour minimiser la probabilité d’erreur, on cherche donc
g qui minimise le risque empirique parmi toutes les indicatrices de
boules. On visualise a nouveau dans l'espace R4 les données X1, . .., Xu
en les coloriant avec deux couleurs : X; en rouge si Y; = 1 et X; en bleu
si Y; = 0. On essaie de trouver une boule #* de centre (aj,...,a}) et
de rayon /aj qui inclut le maximum de points rouges et laisse a
I'extérieur le maximum de points bleus; soit l'inverse en échangeant
rouge et bleu. La fonction g5 (X) = 14+(X) sera la fonction minimi-
sant le risque empirique.

. Classification par des convexes. On prend pour 7 I’ensemble de tous
les polygones convexes de IR?, famille pour laquelle nous avons déja
vu que V; = +4oco. Cette classe d’ensembles est trop massive pour
que l'erreur d’estimation puisse étre raisonnablement controlée par
la théorie de Vapnik-Chervonenkis.

. Classification linéaire généralisée. On se place dans R? et on se
donne ¢, ..., 14 un nombre fixe de fonctions mesurables de R? —
R. Les regles de classification considérées sont alors de la forme

g(x) _ 1 si 7;1 a]-gbj(x) +ag>0
0 sinon,

oit (ag, ay,...,a5) € RT est un parametre vectoriel. Lorsque Pi(x) =
x), on retrouve la famille des regles linéaires. Néanmoins, bien d’autres
choix sont possibles. En prenant par exemple pour les ¢; les applica-
tions coordonnées et produits de ces coordonnées, on voit que .7 est
contenu dans une famille d’ensembles du type

d ) d ) ) )
{a0+ Za]x(]) _|_ Zb](x(]))2+ Z lecjzx(]l)x(]Z) Z 0}
j=1 j=1 1<j;<jp<d
Danscecas, d*=1+2d + @ et par ailleurs V_; < d* 41, et donc

R(g;) — inf R(g) - 0, P-pus.
8c¥%
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Chapitre 3

Théoreme de Stone et plus
proches voisins

Les chapitres précédents ont mis en lumiere le role essentiel joué par le
principe de minimisation du risque empirique pour l'apprentissage super-
visé. Dans le cas de la classification, on a également vu le role du théoréeme
de Vapnik-Chervonenkis dans le controle de I'erreur d’estimation. Il s’avere
cependant que les familles de regles de décision admettant une dimension
de Vapnik-Chervonenkis finie sont presque toujours trop petites et ne per-
mettent pas d’approcher correctement le risque de Bayes R*. On peut par
exemple montrer que pour n’importe quelle famille de regles G dont la
classe de boréliens associée oy = {{x : ¢g(x) = 1} : ¢ € ¥} admet une
dimension de Vapnik-Chervonenkis finie, et pour tout € € (0,1/2), il existe
un couple de variables aléatoires (X, Y) tel que

inf R(g) —R*>1/2—¢.

g€g
Il existe cependant d’autres fagons de procéder. Une stratégie concurrente
de la minimisation du risque empirique consiste a utiliser 1’échantillon
Dn = (X1,Y1),...,(Xu, Yn) pour estimer la fonction de régression r(x) =
E(Y|X = x), et la remplacer par son estimateur r,(x) = r,(x, Z,) dans la
régle de classification.

Dans ce chapitre, nous revenons au cadre général de 1'apprentissage su-
pervisé, avec un couple de variables aléatoires (X,Y) dans R? x ). Le cas
Y = {0,1} (ou plus généralement un ensemble fini) correspond au pro-
bleme de classification tandis que ) = IR correspond a la régression. Nous
nous plagons toujours dans le cadre ou on veut prédire Y a partir de X, en
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utilisant pour cela un n-échantillon de variables (X1, Y1), ..., (Xu; Yy) idd.
de méme loi que (X, Y) (et indépendantes de celles-ci).

3.1 Liens entre classification et régression

Considérons tout d’abord le cas Y = {0,1} de la classification binaire.
Pour faire le lien avec le chapitre précédent, partons de la caractérisation
du classifieur de Bayes

e 1 sir(x)>1/2
g'(x) = { 0 sinon, 3-1)

our(x) =P(Y=1| X =x) =E(Y| X = x). Nous allons donc utiliser
I’échantillon 2, = (X1, Y1), ..., (X, Yx) pour estimer la fonction de régres-
sion, et la remplacer par son estimateur r,(x, ;) dans (3.1). La regle de
classification résultante, dite regle plug-in, s’écrit donc naturellement

gn(x):{ 1 sirg(x)>1/2

0 sinon.

Le théoréme qui suit précise le lien entre g, et r,, en termes d’erreurs
R(gn) =P(gn(X) #Y | Zn), R*=P(g"(X) #Y).

On rappelle que p désigne la loi de la variable aléatoire X.

Théoreme 6. Soit r, un estimateur de la fonction de régression et g, la régle de
décision plug-in associée. Alors

0< Rigw) = R* <2 [ Iralx) = r(x)| p(dx).

En particulier, pour tout p > 1,

0<Rig) =" <2( [ ) P uan)

et
0 < ER(g) - R* < 2(E|r(X) - r(X)[P)""".
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Démonstration. Remarquons que

Lo, )2y = g, x)=11y=0 + L, (x)=0lvy=1,
d’otur il vient
P(gn(X) # Y|X, Dy) = Ly, x)=1P(Y = 0|X, Dy) + 1y, (x)=0P(Y = 1|X, D)
=1, (x)=1(1 = (X)) + L, (x)=0"(X)

ou, dans la derniere égalité, nous avons utilisé 1'indépendance entre le
couple (X,Y) et D,. De fagon similaire, (on rappelle que ¢* est détermi-
niste)

P(g"(X) # Y|X) = Lgr(x)=1(1 — (X)) + Lo (x)=07 (X).
Ainsi,
P(gn(X) # Y[X, Dy) —P(g"(X) # Y|X)
= 1(X) (Lg,(x)=0 — Lgx(x)=0) + (1 = 7(X)) (Lg, (x)=1 — Lgr(x)=1)
= (2r(X) — 1)(]1gn(X):0 - 11g*(x):o)
= [2r(X) = g, (x) g+ (x)-

En effet, remarquons que L, (x)=0 — Ilg*(x_):o = —(Lg,(x)=1 — Lgw(x)=1). Par
ailleurs, si 1, x)—o # ]lg*(X):(_) e'al.ors soit 1y (x)=0 = 1 et Lgwxy—0 = 0,
auquel cas g*(X) = 1 et par définition on a r(X) > 1/2 etdonc 2r(X) — 1 >
0; soit 1, (x)—o = 0 et Lox(x)—o = 1 et auquel cas par définition de g* on a
r(X) <1/2etdonc2r(X)—1<0.

Finalement,
P(gn(X) # Y|Da) = R* = E[P(ga(X) # Y|X, Da) — P(g"(X) # YIX)]
= 2/]Rd |r(x) — 1/2|11gn(x)7ég*(x)y(dx)

<2 [ Ira(x) = r(x) (),

puisque gn(x) # ¢*(x) implique |r,(x) —r(x)| > |r(x) —1/2|. En effet
si gn(x) # g*(x) soit ry(x) > 1/2 et r(x) < 1/2, soit rp(x) < 1/2 et
r(x) > 1/2. Dans les deux cas |r,(x) — r(x)| > |r(x) — 1/2].

La 2éme assertion découle de la premiere par 1'inégalité de Holder.
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Pour déduire la 3éme assertion du théoréme, on remarque que

/Rd |70 (%) — r(x)|p(dx) = E(|rn(X) = r(X)] | Zn).

On prend 'espérance des deux parties de la premiere assertion du théo-
réme et on obtient :

0 <ER(gn) — L* <2E|ry(X) — r(X)|.
Il reste a appliquer ensuite I'inégalité de Jensen qui donne
Elra(X) = r(X)| < (Elra(X) = r(X)[P)!/?.

O

Remarque : On retiendra du Théoréme 6 que si I'on dispose d"un estima-
teur r,, de la fonction de régression qui soit tel que

/]Rd |7 (x) — r(x)|2 u(dx) -0 (3.2)

dans IL!(IP) (ou IP-presque stirement), alors la régle de classification asso-
ciée g, est automatiquement convergente par l’assertion 3 pour p = 2 (ou
fortement convergente par l'assertion 2 pour p = 2). (Rappel : voir la dé-
finition 1 pour la convergence et la convergence forte.) Ce sera le point de
départ de la preuve du théoreme de Stone.

II nous reste donc a savoir comment construire des estimateurs de la fonc-
tion de régression qui possedent la propriété de convergence (3.2); c’est
I'objet du théoreme de Stone.

3.2 Le théoreme de Stone

Dans cette section, ) = {0,1} ou R et nous allons construire des esti-
mateurs de la fonction de régression r(x) = E(Y|X = x) a partir du n-
échantillon Z,,. Une fagon canonique de procéder consiste a écrire

ra(x) = Z Wyi(x)Y;, x€RY, (3.3)
i=1
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ou chaque
Wm-(x) = Wm'(x, Xl, .. .,Xn)

est une fonction borélienne réelle de x et Xj,..., X;; (pas Y1,..., Yy).

Il est intuitivement clair que les couples (X;, Y;) pour lesquels X; est « proche »
de x (en un sens qui reste a préciser) devraient apporter davantage d’in-
formation sur 7(x) que leurs homologues plus éloignés. En conséquence,
les poids W,; devront en regle générale étre plus grands autour de x, de
telle sorte que r,,(x) ainsi défini se présente comme une moyenne pondérée
des Y; correspondants aux X; situés dans un voisinage de x. Voila pourquoi
un estimateur r, de la forme (3.3) est appelé estimateur de type moyenne
locale. Bien souvent (mais pas toujours), les W,;(x) sont positifs et norma-
lisés a 1, de telle sorte que (Wy1(x),..., Wuu(x)) est en fait un vecteur de
probabilités.

Un exemple typique d’estimateur de type moyenne locale est 1'estimateur
a noyau, qui est obtenu en prenant

K (=X
Wni(x) = 71<K <th>X])/

o1 K est une fonction positive mesurable sur RY avec le maximum en 0
(appelée noyau) et I est un parametre strictement positif (appelé fenétre),
en pratique fonction de n. (Si le dénominateur est nul, on pose W;(x) =
1/n.) En d’autres termes, pour x € RY, I'estimateur a noyau de la fonction
de régression r, appelé estimateur de Nadaraya-Watson, est donné par

LK (5
i=1 h 1
ra(x) = e (3.4)
n j
K ()
(Si le dénominateur est nul, on pose ,(x) = 1 Y | ¥;.) En particulier, pour

le choix de noyau dit naif K(z) = 1;;<;, on obtient

n
Y Nex<nYi
= == )
Lj=1 Ljx—x;)|<n

n(x)

ce qui montre que 7(x) est estimé par la moyenne des Y; tels que la distance
euclidienne entre x et X; ne dépasse pas /. Pour un noyau plus général K,
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le poids de Y; dépend de la distance entre x et X; par I'intermédiaire de la
forme du noyau. Les noyaux les plus classiques sont le noyau d’Epanech-
nikov K(z) = (1 — ”ZHZ)]lHZHSl et le noyau gaussien K(z) = L

Un second exemple important d’estimateur de type moyenne locale nous
est fourni par l'estimateur des plus proches voisins :

r(x) =Y v Yy (x), x€ RY,
i=1

pour lequel (vy1, ..., Un,) est un vecteur de poids déterministes normalisés
a1, etlasuite (X(1)(x), Y(1)(x)), ..., (X(n)(x), Y(n)(x)) estla permutation de
(X1,Y1),...,(Xn, Yu) correspondante aux distances croissantes des || X; —
x|| (en cas d’égalité ||X; — x|| = || X; — x|| avec i < j, X; sera arbitrairement
déclaré plus proche de x que X;). En d’autres termes,

[ Xy (x) = x| < [[ Xy (x) = x| < < 1 X ) (x) — x].
Pour s’assurer que cet estimateur est bien de la forme (3.3), il suffit de poser

Wm'(x) = Unoi(x,X1,...,.Xn)7

ou (o9(x,X1,...,Xn),00(x, X1, ..., Xn) ..., 00(x,X1,...,Xn)) est la permu-
tation de (1,...,n) telle que X; est le o;-eéme plus proche voisin de x.

Parmi tous les choix possibles de vecteurs de poids (v, ..., V), un cas
particulier important est obtenu en posant v,; = 1/k pour 1 < i < k et
v, = 0 autrement, avec {k} = {k,} une suite d’entiers strictement positifs
ne dépassant pas n. L'estimateur résultant s’appelle estimateur des k-plus
proches voisins et s’écrit donc

k
ra(x) = ZY(i)(x), x € RY.
i=1

ol

Le principe de cet estimateur est naturel : pour estimer la fonction de ré-
gression autour de x, on regarde les k observations X; les plus proches de
x et on fait la moyenne des Y; correspondants.

Le théoreme ci-apres, connu sous le nom de théoreme de Stone, donne des
conditions suffisantes sur les poids W,,;(x) garantissant que la fonction de
régression de type moyenne locale vérifie la convergence (3.2) dans IL'(IP)
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deés que la loi de (X,Y) vérifie EY? < +oco. Pour simplifier, nous suppo-
serons désormais que les poids W,;(x) sont positifs et normalisés a 1 (i.e.,
Y1 Wyi(x) = 1), ce qui fait de (Wy1(x), ..., Wyn(x)) un vecteur de proba-
bilités.

Théoreme 7 (STONE). Supposons que, quelle que soit la loi de X, les poids W;
satisfont les 3 conditions suivantes :

1. Il existe une constante c telle que, pour toute fonction borélienne f : RY —
R telle que E|f(X)] < oo,

n
IE(ZWm-(X) |f(X,-)|> < cE|f(X)|, pourtoutn >1.
i=1
2. Pour tout a > 0,
n
E ( Y. Wni(X)ﬂ||x,-X|>u) — 0.
i=1

3. Ona
IE( max Wni(X)> — 0.
1<i<n

Alors, l'estimateur ry, de la régression défini en (3.3) satisfait
E (ra(X) = (X)) = B [ Irux) = r(x) Pu(dx) =0,
quelle que soit la loi du couple (X,Y), dés que EY? < +o0.

La condition 2 exprime le fait que la contribution des poids a l'extérieur
de n’importe quelle boule fermée centrée en X doit étre asymptotiquement
négligeable. En d’autres termes, seuls les points situés dans un voisinage
local de la cible sont importants pour I’évaluation de la moyenne. La condi-
tion 3 interdit a un seul point d’avoir une influence disproportionnée sur
le calcul de I’estimateur. Enfin, I'hypothese 1, parfois appelée condition de
Stone, est essentiellement de nature technique. Insistons bien sur le fait que
le résultat du théoreme est universel, au sens ot la convergence est valable
quelle que soit la loi du couple (X,Y), dés que EY? < +oo. En particulier
en classification ) = {0,1}, noter que cette derniére condition d’ordre est
toujours satisfaite.
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Démonstration du Théoréeme 7. On introduit
" n
rn(x) = Z Wni(x)r(Xi)'
i=1

(Notez que ce n’est pas un estimateur, c’est une quantité qui dépend de
la fonction de régression inconnue r.) En utilisant I'inégalité (a + b)? <
2(a® +b?),on a

E (ra(X) = r(X))* = E (ru(X) = 7u(X) +7u(X) = (X))’
< 2(E (r(X) = 7a(X))* + E (7a(X) = 1(X))* ). (35)
11 suffit donc de montrer que chacun des deux termes de la borne ci-dessus
tend vers 0 lorsque n tend vers l'infini. Comme les poids W,;(x) sont po-

sitifs et normalisés (}_;" ; W, ;(x) = 1), I'inégalité de Jensen permet d’écrire
que

" 2

(3 W) (%) 1)) )
=1

B 3 () 1) — ()

E (7a(X) = (X))?

IN

Par densité dans IL?(u) des fonctions continues a support compact, pour
tout ¢ > 0, on peut trouver 7’ continue a support compact telle que

E(r(X) = r'(X))* = [ Ir(x) =#'(x) Pu(d) <.

Alors, avec (a +b+c)> < 3(a®> +b>+c?),ona
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En utilisant la premiére condition et } ;' ; W,,;(X) = 1, ceci implique

< 3EB(r(X) — 7' (X) + 3 Y. Wy (X) (F(X) — 7' (X)? + 3E( (X) — r(X))?
i=1

<3(c+1)e+3E i Wi (X)(r'(X;) — 7' (X))
i=1

Considérons le second terme de droite. Puisque 7’ est continue a support
compact, elle est aussi uniformément continue. Ainsi, il existe p > 0 tel que
|x — x'|| < p implique |r'(x) — #'(x")|? < e. Par ailleurs, 1’ est aussi bornée.
Ainsi,

n n
< 4|/ |2E ( zwm<x>]1|x,._X|>p) TE ( ZWni(X)€>
i=1 =1
1112 a
= 4r ”oolE(ZWni(X)]l|XjX|>p) +e.
=1

1

Ainsi, d’apres la condition 2, puisque ¢ est arbitraire, le terme ci-dessus
peut-étre rendu arbitrairement petit et on obtient

E ( Y Wyi(X) (r(X0) — r<x>>2) S0
i=1

ce qui implique E (7,(X) — r(X))* — 0.

I nous reste a contrdler le premier terme du membre de droite de 'inégalité
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(3.5). Observons pour cela que, pour i # j,
E (Wpi(X) (Y; — r(X;)) Waj(X) (Y; — (X))
= E[IE (W, (X) (¥i — (X)) Wy (X) (¥ = (X)) X, X1, .-, X, Y5) |
= :Wm’(X) (Yi = 7(X3)) Wi (X)E(Y; — (X)X, X1, - ., Xn/Yi)]
= E| W,i(X) (Y = (X)) Wo (OE(Y; = r(X;)|X))|
(par indépendence entre (X;,Y)) et X, Xy,..., Xj—_1, Xj+1,- .-, X, Yi)
= B[ Wi (X) (¥; = (X)) Wy (X) (r(X;) = r(X;))

Du coup
n 2
E (a(X) — 7a(X))? = E( W) (% - r<xl>>)
-3 zlra (Wai(X) (Y; = 7(X0)) Wi (X) (¥, — 7(X;)))
i=1j=
= 1 (W3(X) (% (X))
On note

o (x) = E((Y = r(X))*|X = x)
et on remarque que puisque EY? < 400, on a Ec?(X) = E(Y —r(X))? =
EY? —E(r(X))? < +oc0. Ainsi,

E () ~Ta(00)" = L (W00 [0 —r(x) 1]
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Si 0?(+) est une fonction bornée, on conclut en utilisant la condition 3 via :
n
~ 2
E(ra(X) (0" < |2 £ Wa(X))
< 101 o W0 3, )

= ||c72||oo]E< max Wm-(X)> — 0.

1<i<n

Sinon, puisque o € IL! (i), en utilisant & nouveau un argument de densité,
pour tout ¢ > 0, il existe une fonction continue bornée & telle que

E|5?(X) — ?(X)| < e

Par ailleurs,

E (rn(X) _?H(X))Z =

M-

N
I
N

E (w,%i<x>02<xi>)

-

~
Il
—_

< Y B (Wi(x)7 )+ZIE( )|o?(Xi) — 72(X))])
et on utilise la premiere condition pour traiter le second terme. ceci termine
la preuve. O

3.3 Estimateur de Nadaraya-Watson pour la
régression

Dans cette section, on se place dans le cadre de la régression, avec JV =
R. Nous allons nous intéresser a 1'estimateur a noyau de la fonction de
régression (3.4) et utiliser le théoreme de Stone (théoreme 7) pour prouver
la convergence universelle de cet estimateur sous des conditions générales
sur le noyau K et la fenétre h. On se place dans la cas d’'un noyau a support
compact, c’est le cas par exemple du noyau d’Epanechnikov. La condition
que K est non nul sur une boule au voisinage de 0 est faible.
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Théoréme 8. On suppose que K : R — R est a support compact et qu'il existe
7 >0,b> 0 tels que K(x) > bl cp(q)- Alors, si hy — 0 avec nht — 40, l'es-
timateur a noyau (3.4) est universellement consistant pour le risque quadratique
intégré, i.e.

E(r,(X) — IE/ ra(x) — r(x))?u(dx) —
quelle que soit la loi du couple (X,Y), dés que EY? < +-co.

Démonstration. Pour prouver le résultat, il suffit de vérifier que les condi-
tions 1 — 3 du théoreme de Stone (Théoréeme 7) sont satisfaites sous les
conditions du théoréeme. On note K, (-) = K(-/h). On rappelle que les poids
W,,; sont définis par

K (x — Xi)
Y1 Ki(x = Xj)
Commencons par vérifier la premiere condition du théoréme de Stone. Soit
f une fonction borélienne telle que E|f(X)| < +o0. Alors

Wni(x) -

n n Kh (X - X;)
EY W,(X =E X;
L WX = B X g B0 s ()
_ Kh(X X1)
=n u Kh(X_u) u

Ky(x —u)

=n [ MOIE [ et SN el

1l suffit donc de montrer qu'il existe ¢ > 0 tel que pour tout u € RY,

Kp(x —u) c
IE/]Rd Kh(x—u)j—z” 2Kh(x_X])u(dx) <

Puisque le support de K est compact, il peut étre recouvert par une union
finie de boules (B(Ci/ﬂ/z))1<i<L- Alors, pour tout x € R%, u € RY,

Ky(x —u) = ZK;, X —u) {T € B(c1,17/2)}
L

=Y Ky(x —u)I{x € u+ hc;+ B(0,hn/2)}.
i=1
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On obtient
B Jo kit u)Ki(g?;ufihu —x)M )
3 _
" B ssomn Kile- u)Ki(g?—zufihu —x)
= Z]E/—H’IC—FB (Ohy/2) T+ L7 ZKh(l j)/HKHwy(dx).

Par ailleurs, si x € u + he; + B(0,hy/2) alors u + he; + B(0,hn/2) C x +
B(0, hn) (faire un dessin!) et par hypothese K(x) > bll,cpq,,) d'otiil vient
Ky (x —u)
E [ d
R Kh(x —u) + 1, Ky (x - Xj)y( ¥

1
< 1E/ d
< Z et/ 1+ b/ Kl B, 1% € x 1 B, )} 4

1
< lE/ d

||K||oo Y E ﬂ(u+hcz+3(0 hiy/2))
1+ 200, {X; € u+he;+B(0,hn/2)}

<

(puisque b/||K||ee < 1). On utilise alors le lemme technique suivant : Si

U ~ B(n,p) alors
1 1
< .
1+U =~ (n+1)p

p*(1—p)"
k:0k+1

1 ST n—k
- 1—
(n-i—l)pl(_;)(k-l—l)p (1=7p)

E

En effet,

SWEO( j )”](1_*’) "
il 1
~ P = Gy
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Ainsi, la variable aléatoire 3/, 1{X; € u + hc; + B(0,h1/2)} suit une loi
B(n—1,p) avec p = u(u + hc; + B(0,hn/2)) donc

Ky (x —u)
R4 Kh(x — u) + anz Kh(x — X])

< |I<||oo Z p(u+he;+B(0,hn/2))  L||K]e
- u(u+he;+B(0,hy/2))  bn '

E

p(dx)

ce qui termine la vérification de la premiére condition du théoréeme de
Stone.

La seconde condition de ce théoreme est vraie puisque K est a support
compact donc pour tout a > 0, dés que h = h;, est assez petit,

L Yic1 Kn(X = Xi)yx,— x| >a
Wi X)L x x|y = —— l

=0.

Vérifions enfin la troisieme condition du théoréeme. Si 27:1 Ky(X=X;) =0
p.s, alors on rappelle que W,;;(X) = 1/n pour tout 1 < i < n, et la condition
est triviale. Sinon, on choisit M > 0 et

Kn(X — X;)
E W E
g, W) = E e o KX - X)
Koo 1
< n
=0 T ko xgenony T e 0
1 -
Kllo [ xeBOMIT 5 x jeniom) >0
S H || n j=1 "X X]HEB(Ohy]) —|—y(B((),M)C) '
b Lj=1 Yyx—x;|eB(o)

Le premier élément du terme entre crochets s’écrit

HZ] 11x;eB(xm) Tuy>o0

E [HXEB(O,M)]E< T |X>] E []IXGB(O,M)]E( |X>]
X;€B(X,hy)

Or Uy = Z?Zl ]1X],e B(x,iy) €st une variable aléatoire de loi conditionnelle

a X, binomiale B(n,p) avec p = u(B(X,hn)). On peut montrer comme
précédemment (exercice) que

Ty, 2
E(1X) < (i DaB )’

49



Chapitre 3 Théoreme de Stone et plus proches voisins

On en déduit

1K ||oo 21 xcp(o,m)
E max WuilX) < == B0y 1(B (X, )

Pour tout e > 0, on peut choisir M > 0 assez grand pour avoir y(B(0, M)¢) <
e. Pour finir, il faut donc vérifier que

+ u(B(0,M)°) | .

E IxeB(o,m)
(n+1)u(B(X, hy))

tend vers 0. Pour tout n > 1, la boule B(0, M) peut étre recouverte par un
nombre k;, < C/hﬁ de boules de rayon hy /2 = h,1n/2, i.e.

C

E.

B(0, M) C U B(c;, a1 /2), kn <

(Pour le voir, on peut raisonner sur la norme uniforme, faire une grille
de pas 1/h, dans chacune des dimensions, et utiliser les équivalences de
norme). Alors,

Txeno,m) 1
B T Du(B(X, ) A%AQW+4nm<xhw»d“”

< B(cihun/2)
._Z/’ By du)

»

k
< xeB (cihnn/2) d _*n
- & / B(ci, hun/2)) px) n — nhd’

»

puisque si x € B(c;, huy /2) alors B(ci, hu1/2) C B(x,hyn). On obtient que
sous la condition nh? — 0, la 3éme condition du théoréeme de Stone est
satisfaite. Ceci acheve la preuve de notre théoréeme. O

3.4 k-plus proches voisins pour la classification

Dans cette section, on se place dans le cadre ) = {0,1} et le probleme
de classification supervisée. Conformément a ce que nous avons dit en
introduction de ce chapitre, on associe naturellement a un estimateur de
type moyenne locale la regle de classification plug-in

{1 si Y Wei(x)Y; > 1/2

0 sinon,

gn(x) =
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ou, de fagon équivalente lorsque les poids sont normalisés (i.e. lorsque Y} ;
Wm-(x ) = 1),

gn(x) — { 1 si Z17'121 Wni(x)ﬂYi:l > Z?:l Wni(.X)ﬂyi:O
0 sinon.

Dans la suite, k = k;, est un entier strictement positif compris entre 1 et (et
fonction de n). On rappelle que (X(1)(x), Y(1)(x)), .-, (X (%), Yy (x)) dé-
signe le réordonnement de I’échantillon original (X3,Y1),..., (Xy, Yn) sui-
vant les distances euclidiennes croissantes des X; a x.

Nous avons vu dans la section 3.2 que la regle de classification des k-plus
proches voisins a pour expression

L 1 ks 1 ks
gu(x) = Lost g2 by (=1 > gy Lila Ly (n=0
0 sinon

ou, de fagon équivalente,

- vky kn
gu(x) = { L osi)yy ]lY(i)(x)zl > Yl IlY(i)(x):O

0 sinon.

Le prochain théoréme, dont la preuve utilise le théoréme de Stone, établit
la convergence universelle de la regle g, pourvu que k croisse avec n mais
pas trop vite.

Théoreme 9. Supposons que k, — +oo et k,/n — 0. Alors la regle de classifi-
cation des k-plus proches voisins est universellement convergente, i.e.

ER(gn) — R*

quelle que soit la loi du couple (X,Y).

Pour prouver le résultat, il suffit simplement de s’assurer que les conditions
1 — 3 du théoreme de Stone (Théoreme 7) sont effectivement vérifiées par la
regle des k-plus proches voisins. Pour ce faire, nous aurons au préalable be-
soin de quelques lemmes techniques. Pour simplifier un peu, nous suppo-
serons dans la suite que les égalités entre distances || X; — x|| = || X; — x|| se
produisent avec probabilité zéro (c’est par exemple le cas lorsque || X — x||
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admet une densité par rapport a la mesure de Lebesgue). La preuve du
Théoreme 9 s’étend au cas général, au prix de quelques petits aménage-
ments techniques pour gérer les distances ex-aequo. On rappelle que le
support de la loi i est défini comme ’ensemble des x € R¥ tels que, pour
tout ¢ > 0, u(B(x,e)) > 0, avec B(x,¢) la boule fermée de centre x et
de rayon e. Alternativement, il s’agit du plus petit ensemble fermé de u-
mesure 1.

Lemme 3. Soit x dans le support de y. Alors, si k,/n — 0, ona
[ Xk, (x) = x| =0, P-ps.

Démonstration. Fixons ¢ > 0 et observons, puisque x appartient au sup-
port de p, que u(B(x,e)) > 0. Notons également 'égalité suivante entre
événements :

1 n
{1 @ =1 > ef = {13 Ixeaen <
i=1

Or, d’apres la loi forte des grands nombres,

k

i

1 n
- ZﬂxieB(x,e) — u(B(x,e)) >0, P-ps.
=1

1

Comme k,/n — 0, on en conclut immédiatement que || X,)(x) — x| —
0,IP-p.s. [

Lemme 4. Soit v une mesure de probabilité sur R%. Fixons x' € RY et définissons,
pour a > 0,

Ea(x') = {x e RY: v (B(x, ||x' — x||)) < a}.
Alors
v (&(x")) < vaa,
ot 7y, est une constante strictement positive ne dépendant que de d.

Démonstration. Fixons x' € RY et considérons une famille 43, ...,%,, de
demi-cones d’angle 71/6 centrés en x’, suffissmment nombreux pour que
leur union recouvre R?. En d’autres termes,

Yd
% =R
j=1

52



Chapitre 3 Théoreme de Stone et plus proches voisins

FIGURE 3.1 — [llustration de la propriété : si u,u’ € ¢ et ||u — x| < ||u’ —
x|, alors ||u —u'|| < [|u" —x'||

Commengons par montrer que si u,u’ € j et |lu —x'|| < [[u’ —x'||, alors
|lu —u'|| < ||u’ —x'|| (voir Figure 3.4). refaire ce dessin En effet, notons
u—x"=aetu —x" =0b,alors u —u' = a—b. Par hypothese ||a|]| < ||b]]
et (a,b)/(|lall x [[b]]) > cos(7/3) =1/2. Ainsi, |a —b|]*> = |la|]* + [|b]]* —
2(a,b) < [la]l* +[[b]1* = llall x |6 < [[6l1* + llall(llall = [[6]]) < [|p]?, d"on
la — bl < [|b]]

Ona

v(6N& (X)) = lim v (€ NB(x,R)NE(x)).
R—R,

ot Rp = sup{R : Ix* € G N&E(X) : ||x' —x*|| = R} (il se peut que
Rp = 0). Or pour tout R < Ry

v(€NB(x,R)N&(x")) <v (€ NB(x,R)) =v(6NB,|x —x|))
avec x* € €I N E,(x'). Par la propriété de cones ci-dessus
¢ NB(x, [|x" = x'[|) € B(x", ||lx" — x'[]).

En effet, si x € 4; N B(x/, [[x* — «'||), alors [|x — x'|| < [lx* —x'[|, et comme
x,x* € ¢jona ||x — x| < |x* —x'||, donc x € B(x*, [|x* —x'[|).

Or, comme x* € &,(x’), on déduit par la définition de &,(x’) :

v(B(x* |lx* = x))) <a.
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Finalement pour tout R > 0 tel que 3x* € €N & (x') : [|x' —x*|| = Rona
v(¢NB(x,R)N&(x)) <a.

Alors
v(GiN&(x")) <a

ce qu’il fallait démontrer. O
Le corollaire suivant énonce une conséquence fondamentale du lemme pré-
cédent : le nombre de points dans {Xj, ..., X, } pour lesquels X est 'un des

k plus proches voisins, ne dépasse pas une constante fois k. Dans la suite,
I'abréviation k-ppv signifie « k-plus proches voisins » .

Corollaire 2. Si les égalités entre distances se produisent avec probabilité zéro,
alors P-p.s., le nombre de X; tels que X soit parmi ses k-ppv est borné par k4,
Le.

n
Z 1{ X est parmi les k-ppv de X; dans {X1, ..., Xi—1, X, Xiz1, .-, Xn}} < knva,
i=1

P-p.s.

Démonstration. On applique le Lemme 4 avec a = k,/n et v la mesure
empirique y, associée a Xj, ..., X;. Avec ce choix, on a

Erun(X) = {x € R : juy (B(x, ||1X = x])) < ku/n}
et, P-p.s.,

X € &, /n(X)
< n (B(Xi, | X = Xil])) < kn/n
< X est parmi les k,-ppv de X; dans {Xy,...,X; 1, X, Xix1,---, Xn}-

(Noter que la seconde équivalence utilise le fait que les égalités entre dis-
tances se produisent avec probabilité zéro! ). Ainsi, en appliquant le Lemme
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4, il vient, P-p.s.,

n
Z 1{X est parmi les k,-ppv de X; dans {Xy,..., Xj—1, X, Xjs1,..., Xn}}
i=1

HX; € &, /n(X)}
i=1

=n X pn (&, /n(X))
< knyg-

]

Lemme 5. Supposons que les égalités entre distances se produisent avec probabilité
zéro. Alors, pour toute fonction borélienne f : R? — R telle que E|f(X)| < oo,
ona

ky
Y E|f (X (X)) < knraE [ f(X)],
i=1
oil 7y, est une constante strictement positive ne dépendant que de d.

Remarque : Avant de montrer ce lemme, remarquons que la relation « étre
parmi les k-ppv » n’est pas une relation symétrique. Ainsi, si on se donne
un ensemble de points % = {uy,...,u,} € R, on peut avoir u; est un
k-ppv de u; dans % \ {u;} sans que u; soit un k-ppv de u; dans % \ {u;}.

Démonstration. Prenons f une fonction comme dans I"énoncé. Alors

n
X Z;HX est parmi les k,-ppv de X; dans {Xy,..., X;_1, X, Xj11, .. .,Xn}>
1=

(en échangeant X et X; qui sont de méme loi!)
< E(If(X)knva) ,

d’apres le Corollaire 2. Ceci conclut la preuve du lemme. O
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Nous sommes désormais en mesure de démontrer le Théoreme 9. 11 suffit
pour cela de vérifier les conditions du théoreme de Stone (théoreme 7),
avec Wyi(x) = 1/ky si X; est parmi les k, plus proches voisins de X et
W,,i(x) = 0 sinon.

Démonstration du Théoreme 9. La condition 3 est évidente dans la mesure ot
k;, — +oo. Pour la condition 2, on note que

E ( ; Wm(X)11|X,-—x|]>u> =E (E Y. Lix,, (X)—X|>a) ,

i=1

de sorte que par le lemme de Cesaro,

n
E ( Y. Wni(X)]l|X,-—X||>a) —0
i=1

des que, pour tout a > 0, le terme général
P (| X ey (X) = X[ > a) = 0.
Or,

P((1 X, (X) = X[ > a) = [ P(X(e,)(x) = ¥l > )p(dv).
Pour x fixé dans le support de y, le Lemme 3 indique que la convergence
P([| X, (x) — x| >a) =0

a lieu lorsque k,,/n — 0. Le résultat s’en déduit par convergence dominée,
en notant que le support de u est de y-mesure 1.

Examinons pour terminer la condition 1. Il s’agit de voir que, pour toute
fonction f telle que E|f(X)| < o0, on a

1 n
E (E Z} £ (X3)] Ix; est parmi les k,-ppv de X) < cE|f(X)[,

=

pour une certaine constante c. Comme

1 2 1 ky
E (k_ Y 1f (X)) Iy est parmi les k,-ppv de X) =E (k_ ) |f (X5 (X)) |)'

ni=1

c’est précisément 1'énoncé du Lemme 5. O
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Introduction au clustering
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Chapitre 4

Quantification et clustering

Le clustering est une technique de classification non supervisée : contrai-
rement a la partie précédente, on ne dispose pas d'un échantillon dont les
étiquettes sont observées pour faire notre apprentissage. Nous présentons
ici le clustering a travers ses liens avec la quantification.

4.1 Principe de la quantification

La quantification est un principe probabiliste dont 1’objectif est de com-
presser l'information contenue dans une variable aléatoire X a valeurs dans
(R4, || - |]), ot || - || désigne la norme euclidienne. On se donne dorénavant
une telle variable X, en notant y sa loi et en supposant que [E|| X||? < o ou,
ce qui est équivalent, que

[ IxPa(dx) < oo

Définition 3. Soit k un entier > 1. Un quantifieur q d’ordre k est une fonction
mesurable q : R — € C RY avec |€| < k.

Un quantifieur g d’ordre k est donc caractérisé par :
> Un alphabet ¢ = {c1,...,cx}
> Une partition 2 = {Ay,..., A;} de RY, avec la numérotation imposée

par
q(x) =cj & x € A;.

58



Chapitre 4 Quantification et clustering

On écrira dans la suite g = (%, #?). Un quantifieur apparait ainsi comme
un outil de compression de l'information. L'étape suivante consiste alors
a se doter d'un critére mesurant la pertinence de la compression de la
variable aléatoire X (ou de sa loi ) au travers de g.

Définition 4. La distorsion (pour X ou ) d'un quantifieur q = (¢, &) d’ordre
k est définie par

D(p,q) = E[X —q(X)|* = /w lx = q(x) 2 p(dx).
La distorsion minimale a I'ordre k est
D (i) = inf D(,4),
ou l'infimum est évalué sur tous les quantifieurs d’ordre k.

Bien entendu, plus la distorsion est faible, meilleure est la compression. Par
ailleurs, comme on s’en doute, la qualité d’une quantification s’améliore
lorsque k grandit. Ce phénomene est précisé dans le lemme ci-dessous.

Lemme 6. La suite des distorsions minimales a I'ordre k décroit vers 0 lorsque k
grandit, i.e. Di(p) N\, 0 si k — 4-c0.

Démonstration. Tout d’abord, il est clair que la distorsion minimale décroit
a mesure que son ordre augmente. Puis, comme IR? est un espace métrique
complet, la mesure bornée v définie pour tout borélien A de R? par

v(4) = [ I¥IPa(dx)

est tendue, i.e. pour tout € € (0,1], il existe un compact K tel que v(K) >
v(R%) — e. On note {cy, ¢y, ...} un sous-ensemble dénombrable dense dans
RY, alors pour tout € > 0,ona K C U]?o:1 B(cj, V¢€). Comme K est compact,
il existe un k > 0 (assez grand) tel que

k

K C B:= ] B(cj, Ve).

=1

On a donc v(B) > v(R?) — &. Notons maintenant g;_; le quantifieur d’ordre
k +1 d’alphabet {cy, ...,k 0} (en supposant, sans perte de généralité, que
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0 ¢ {c1,c2,...}) et de partition {Al,...',Ak, B¢}, avec A1 = B(cq, Ve) et,
pour j = 2,...,k, Aj = B(cj,/e) \ (Ug;}Al). Comme |x —cjl| < /e si
X € Aj, on a

Dia (W) < Dt aisn) = [ 1 = s (0)|Ppe(d)

_ ; [ gt + JRERIGS

< ey( LkJ A]-) +v(B°) < 2,

=1

ce qui acheve la preuve. O

Parmi toutes les fagons possibles de compresser l'information, la classe
des quantifieurs de type plus proches voisins, que nous abrégerons désor-
mais en quantifieurs PPV, joue un role bien particulier. Dans la suite, on
suppose que les quantifieurs sont d’ordre k et on note, pour un alphabet
¢ ={c1,...,c} C R? de taille , Py (€) la partition de Voronoi associée a
¢, définie par

Ay = {xeRd:||x—c1H < Hx—CgH,VE:l,...,k}, et
j—1

Aj= {x € R : [x —cjll < llx —coll, V€ = 1,...,k} \ U 4,
t=1

pourj=2,...,k

Définition 5. Un quantifieur d’ordre k est un quantifieur PPV si sa partition est
une partition de Voronoi associée a son alphabet. En d’autres termes, un quantifieur
PPV s'écrit g = (€, Py(€)), avec € C R de cardinal inférieur ou égal i k.

Un quantifieur PPV noté g est donc entierement caractérisé par son alpha-
bet € (dont les éléments sont appelés centres ou centroides), via la regle

lx = ¢(x) || = min

Ci€EC ‘x B CjH’

les égalités entre distances sur le bord des cellules étant brisées en faveur
des plus petits indices. On notera les propriétés élémentaires suivantes.
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Proposition 3. Soit qppy un quantifieur PPV d’alphabet € = {cy, ..., ci}. Alors

_ : 2 _ . 2
D dppv) = E min [|X =" = [ min, {lx = cjlI"(dx).

En outre, pour tout quantifieur avec le méme alphabet et une autre partition q =

(¢,2),ona Dy, quv) < D(u,q).

Démonstration. Pour la premiere propriété, en désignant par Py (¢) =
{Av1,..., Ayx} la partition de Voronoi associée a ¢ :

k
Dt o) = [, % = ppu (0)|Pra(d) = Y- [ v = ()
R j=17Av,

k
i 2
- — cilPu(d
];/AVJ oin, |l =i “p(dx)

: 2
= — ¢ 2p(dx).
e 200, [l — cif| " (dx)

Puis, pour la seconde propriété, si & = {A;,..., Ay} est la partition d'un
autre quantificateur g, on a :

i 2
Dl pe) = R 12-1£k‘|x_ci|\ p(dx)
k
_ _ b
_E Aj 1211'1£k||x il V(dx)

k
<Y [ I =glPu(ax)
j=174

= [, = q(x)|u(dx) = D(uq),

par définition de la distorsion. O

La conséquence fondamentale de cette derniere proposition est que les
quantifieurs de distorsion minimale, s’ils existent, sont a rechercher parmi
les quantifieurs du type gppv = (¢, Py(c)) avec ¢ = (cy,...,¢) € R,
(noter 1’abus de notation), de distorsion

W €)= |, min [lx —¢l"(dx) = Dy, gppv)-
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Théoreme 10. Parmi les quantificateurs d’ordre k, il existe un quantifieur de
distorsion minimale.

Esquisse de démonstration. D’apres la Proposition 3, on peut restreindre 1’étude
aux quantifieurs PPV. Il s’agit donc de montrer qu'il existe ¢* € R% tel que

Wip, ) = inf W(gc).

On prouve d’abord (admis ici) qu’il existe R > 0 tel que

inf W(p,c) = inf W(u,c).

ceR%* lel <R

On établit ensuite que la fonction R > ¢ — W(y,c) est continue. Ob-
servons pour cela que la fonction x — min; << ||x — c;j|| est continue. Des

lors, pour ¢y = (Cl,O/ .. -/Ck,o) € R fixé, on a

lim W(,c) :/ lim min [|x — ¢;[2(dx)
R

c—Cp d c—¢p 1§j§k

(d’apres le théoreme de Lebesgue)

. 2
- — ¢ d
o 10, [l = cjo|* ()

(par continuité)
= W(u, co),
ce qui montre bien que W(y, -) est continue.

On déduit de cette derniere propriété et de la compacité de la boule B(0, R)
de R qu'il existe ¢* € R%* minimum de W(y,-). Le quantifieur g* =
(¢*, Pppv(c*)) est alors de distorsion minimale car

Wp, ") = inf W(p,c)=infD(n,q) = D" ().

ccRék

4.2 Quantification empirique et clustering

En pratique, la loi u de la variable aléatoire X est inconnue et il est donc, par
voie de conséquence, impossible de procéder a sa quantification optimale.
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On dispose cependant bien souvent d'un n-échantillon iid. Xj,..., X,
formé de variables aléatoires indépendantes entre elles, de méme loi que X
et indépendante de cette derniere. C’est a partir de cet échantillon que 1’'on
va s’attacher a construire un quantifieur empirique g, (-) = gn(; X1, ..., Xn)
dont les performances se rapprochent si possible de celles du quantifieur
optimal.

Dans ce contexte, la distorsion pour y du quantifieur empirique g, (d’ordre
k) est naturellement définie par

D(u,g0) = [, ¥ = au(x)|2n(dx).

Noter qu’il s’agit d"une variable aléatoire qui dépend de Xy,..., X, a tra-
vers l'estimateur g, et que par ailleurs

D(u,qn) = IE(HX - l]n(X)H2|X1,---,Xn)'

Comme cette quantité est inconnue (elle dépend de la mesure y inconnue),
on l'approche par son équivalent empirique. Ainsi, on suppose toujours
que E|X]||> < oo et on désigne par y, la mesure empirique associée a

Xq,..., Xy, ie.
1 n
:EZ

On introduit la distorsion empirique d"un quantifieur quelconque g, elle prend
la forme

n

Dl ) = [, 2 = ) Pron(dr) = - 11X — (%0

=1

Dans le cas particulier d'un quantifieur de type PPV, gppv = (¢, Zy(c))
avec ¢ = (c1,...,¢) € R, on obtient

D(F‘ﬂﬂppv) = W(pn, c) Z min || X; — C]H2

1< i<k

Pour se doter d’outils qui assurent que la méthode de quantification empi-
rique est performante, on introduit la définition qui suit.

Définition 6. Soit g, un quantifieur empirique. On dit qu’il est consistant si

ED(p, gn) — D*(p). On dit qu'il est de vitesse (vy)n si ED(p,qn) — D* () =
O(1/vy), avec vy, — +oo0.
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On aura noté au passage que, puisque D(u,g,) > D*(u), la propriété
ED(p,qn) — D*(u) est équivalente a D(u,q,) — D*(p) dans IL'(p).

Le quantifieur empirique g;; le plus naturel est obtenu en minimisant la
distorsion empirique sur tous les quantifieurs PPV. En d’autres termes, on
cherche les centres optimaux ¢j; = (¢} 4,...,c} ) tels que

W(pn, c;) = Cér];{fdk W (un, c). 4.1)

On a donc
g = (i, Pv(cq)) -
(Observons que cj, et donc g}, existent en vertu du Théoreme 10.)

Un quantifieur empirique g, (d’ordre k) est naturellement associé a une mé-
thode de regroupement (ou clustering) des données Xi, ..., X, en k classes,
en décidant que 1'observation X; est rangée dans la classe j (1 < j < k) si

n(Xi) = J.
Pour le quantifieur empirique PPV optimal gj;, le j-éme cluster est constitué
des observations X; telles que || X; — CZ,]'H <|[Xi—cpll, VE=1,... k.

On parle parfois, en lieu et place de clustering, de classification (ou appren-
tissage) non supervisé, I'adjectif « non supervisé » renvoyant au fait qu’il
n'y a pas d’'information annexe apportée par des variables réponses Y;. Le
probleme consiste ici a regrouper les données Xj, ..., X, «al’aveugle » , de
la fagon la plus pertinente possible et sans information supplémentaire.

Algorithme des k-means. En pratique, I'approche (4.1) par minimisation
de la distorsion empirique est difficile a mettre en ceuvre, surtout en grande
dimension (probléme NP-complet!). On a alors recours a une technique
approchée, appelée algorithme des k-means. Pour une partition quelconque
P = {AO,...,AIQ} et un alphabet quelconque ¢ = {c(l),...,cg} C R4, on
définit g° = (%, 2). On définit ensuite q' = (¢!, #!) de la maniere sui-
vante. On calcule d’abord ¢! = {c},...,c}} tel que, pour tout j =1,...,k,

n
¢j = Argmin ) || X; — y||*Ly A (4.2)
yeR? =1

1. En théorie de la complexité, un probleme de décision est NP-complet lorsqu’il est
possible de vérifier une solution en temps polynomial (NP) et tous les problémes de la
classe NP se rameénent a lui via une réduction polynomiale.
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Il est facile de déduire par un calcul élémentaire que ce minimum est atteint
pour

n

i=1 Xz‘ﬂxieA?

yj = =c, j=1...k (4.3)

n

i=1 ﬂx,-eA?
Noter que 0]1
E,(X|Xe A?). On construit ensuite la partition 2! = (A],..., A]) qui
est la partition de Voronoi associé a 1’alphabet 4. Par ailleurs, il est facile
maintenant d’attribuer a chaque donnée sa cellule : X; € A]l si

est une espérance conditionnelle pour la mesure empirique,

min || X; — cll||:||Xi—c]1-||, pouri=1,... k.

1<I<k
On continue cette procedure par récurrence. Soient la partition 2" 1 =
{A1, .. A1}, Talphabet € = {c]' !,...,c{" 1} C R7et qm L= (¢, 2)
déja définis. On construit g™ = (€™, ™), avec ‘5 "= {cl',...,c'} tel que,
pour toutj=1,...,k,

n
¢j' = Argmin Y% — yHZﬂX,-eAf”*L (4.4)
yeRd =1 !
Ce minimum est atteint pour
Z?:l XiﬂX,‘EA]m_l ]
y]: 7 :C;ﬂ, ]:1,...,k. (4-5)

i=1 ﬂxieA}"—l

Autrement dit ¢j" = E,(X|Xe A]’-”*l). On construit ensuite la partition
P = (A, ..., A}') qui est la partition de Voronoi associé a I'alphabet .
Par ailleurs X; € A’-" si

mil— (1X; — o™ i
1r£111£1k||X o'l = [1Xi = ¢jll, pouri=1,... k.

L’algorithme s’arréte lorsque plus rien ne bouge, i.e. ¢ +1) = ¢(m),

Remarquons que la distorsion empirique décroit a chaque étape

_ 1
D(un, ") = - L 1% =" (X)[P = Z Z 1% = &' IPLy e ppe
i=1 ] 1i=
1 ko mi||2
> ) ) XK= [Py g
j=1li=1 /
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ou " est le quantificateur avec ’alphabet 4™ mais avec la partition encore
2™~ Ensuite on passe de 2"~ a la partition de Voronoi £™ associée a
¢" et on remarque

D(pn,g") = D(pin, 9™)

en utilisant simplement la Proposition 3 valide pour n’importe quelle me-
sure de probabilité u et en particulier pour u,. Ainsi l'algorithme de k-
means fait décroitre la distorsion empirique :

D(ptn, " 1) > D(pn, q™), m=1,2,...

Néanmoins, méme s’il est assuré que la distorsion empirique décroit entre
deux itérations et que l'algorithme s’arréte au bout d’'un nombre d’itéra-
tions fini, rien ne garantit cependant que les centres ainsi définis soient
proches des centres optimaux cj. Il s’agit d'une méthode approchée que
’'on manipulera donc avec prudence. En pratique, il peut arriver que pour
un point de départ ¢%) particulier, I'algorithme s’arréte dans un minimum
local et pas global. C’est pourquoi on utilise en général l'algorithme k-
means avec 10 points de départ (aléatoires) et on sélectionne le résultat
donnant la plus faible distorsion.

4.3 Consistance et vitesse

L’outil indispensable pour établir la consistance du quantifieur empirique
PPV optimal défini via (4.1) est la distance de Wasserstein.

Définition 7. Soit vy et vy des probabilités d’ordre 2 sur RY. La distance de
Wasserstein py entre vy et vy est définie par

, = inf E|| X — Y|
pwlvyva) = inf /] I

Il s’agit d"une distance usuelle sur les mesures de probabilité. Mentionnons
sans preuve deux de ses propriétés fondamentales :

Propriétés.
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1. Pour vy, v, des probabilités d’ordre 2 sur RY, il existe un couple de
variables aléatoires (Xo, Yp) telles que X ~ v, Yy ~ 1 et

pw(v1,v2) = \/E[|Xo — Yo|*.

2. Soit (v,), et v des probabilités d’ordre 2 sur R?. On a py (v, v) — 0
si

Vv et / ||x||2vn(dx)—>/ 1x[12v(dx).
R4 R4

Ici = signifie la convergence faible (i.e. étroite) de mesures (pour
toute fonction f continue bornée [ fdv, — [ fdv).

Proposition 4.
pw (Hn, ) =0, P —ps.

Démonstration. On applique la propriété 2 ci-dessus. Remarquons tout d’abord
que figa [1Pn(dx) = LT X2 = EX2 = [ | ]u(dx), P- pis. par la
loi des grands nombres Quant a la convergence faible y,, = u,P—p.s., on
pourrait penser qu’elle découle également de la loi des grands nombres :
pour toute f : R — R continue et bornée, E|f(X)| < oo, alors [ps fdpn =
1f( i(w)) = Bf(X) = [ga fdu, p-s.. En effet, 'ensemble Af = {w :
f]Rd X)dpn # Jga fdu} est de probabilité IP(Af) = 0 mais cet ensemble
dépend de f. Et il n’est pas garanti que IP(| ¢ continues bornées 4 f) =0.
La preuve de yu, = u p.s. est beaucoup plus délicate et fait 1'objet du théo-
réme qui suit : le Théoreme de Varadarajan. L'application de ce théoréeme
termine la preuve de pw (ptn, 1) — 0 p.s. O

Théoréme 11 (VARADARAJAN). yy, =y, P—p.s.

Démonstration. Pour prouver cette convergence en loi, on utilise le théo-
réme de Portemanteau, qui dit (entre autres) qu'une suite de mesures de
probabilités v, sur R converge en loi vers v si et seulement si pour pour
tout ensemble O ouvert de R, on a v(0) < liminf,_e v, (O).

Nous devons donc prouver que pour tout O ouvert dans R? et tout w €
Q\N,ona u(0O) < liminf, e pn(0,w) avec P(N') = 0 et N est universel
pour tous les ouverts de R? (i.e. ne dépend pas de I'ouvert O considéré).
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Soit D un ensemble dénombrable dense dans le, soit B l’ensemble des
boules de centres dans D et de rayons rationnels. L'ensemble B est dénom-
brable, on note B; pour i =1,2,..., les boules de cette ensemble. Par la loi
des grands nombres, pour tout ensemble borélien B C R, il existe N avec
P(N3g) = 0 tel que

lim u,(B,w) = u(B), Yw € Q\ Np.

n—o00

(Ici pn(B, w) indique que Xi(w), ..., Xy (w) sont fixés dans la mesure em-
pirique y,). Prenons

N = U1 Ui<iy<ociy NBilm...mBik,
ol B; sont les boules de B. Alors
P(N)=0
et pour toutk > lettous1 <iy <ip <--- <ig,

lim p, (B, N---NB;,w) = u(B;yN---NB;), YweQ\N.

N—00 s

Pour tout ouvert O, il existe un ensemble dénombrable de boules dans B
tel que O = U2 B(d;, ;). En effet, prenons tous les points d; € DN O et
tous les rayons r; rationnels tels que B(d;,r;) C O, alors US*B(d;, ;) C O.
Réciproquement, supposons que x € O. Alors comme O est ouvert, il existe
r rationnel tel que B(x,r) C O. De plus comme l’ensemble D est dense,
il existe un point d € D N B(x,r/5). Alors B(d,3r/5) C B(x,r) C O et
x € B(d,3r/5). Donc pour tout point x € O, on obtient x € US>, B(d;, ;).

Par le théoreme de convergence monotone,
H(0) = J(UZB(di 1)) = lim (UL B(d;mi),
donc pour tout € > 0, il existe L > 1 tel que V¢ > L,

#(UiZ1B(di, i) > u(0) —e.

Notons par la suite B(d;, 7;) = B;. La formule de Poincaré (ou formule du
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crible) donne

(-1} w(ByN---NBy)

1§i1<--'<ik§£

I
1~

n(Ui_,B(d;, 1))

>\~
I
—_

I
-~

i)

(—1)F+1 Y. Hm p, (B M-+~ NB

. . n
1<ip << <V

I
S —_ Tl\“
—_

im in(Ui_1By, w),
pour tout w € O\ . On en déduit puisque U!_,B; C O,

#(0) —e < lim p,(US_ By, w) < liggfyn(O,a)), Vw e Q\N.

n—00

En faisant tendre € > 0 vers 0, on obtient
1(0) < linl)infyn(O,w), Vw e Q\N.
n o0

]

Remarque 1. Le théoreme de Varadarajan porte parfois le titre de principe
fondamental de la statistique. En effet, il justifie la méthode d’approcher et
méme de « remplacer » la mesure y inconnue par la mesure empirique y;,
calculée a partir de n expériences indépendantes.

Remarque 2. La distance de Wasserstein n’est bien stir pas la seule distance
qu’on pourrait définir sur 1’ensemble des mesures. On pourrait considérer
par exemple la distance en variation totale

dry(vi,1n) = sup |v11(A) —12(A)|.
ACR4

Mais la convergence de y, vers p n’est pas assurée dans cette distance. Par
exemple, si la loi y est sans atomes,

drv (pn(w), 1)
> [ ({ X1 () U+ U{Xp(w)}, w) = p({Xa(w)} U~ U{Xn(w)})]
—1-0/=1.

Le lien entre distorsion de quantifieurs PPV et distance de Wasserstein est
établi dans la proposition qui suit.

69



Chapitre 4 Quantification et clustering

Proposition 5. Soient vy et vy des probabilités d’ordre 2 sur RY. Si q est un
quantifieur PPV, alors

D(v1,9)"/* = D(12,q 1/2‘ < pw(v1, 7).

Démonstration. Soit (Xo, Yo) tel que Xo ~ 11, Yo ~ 17 et

pw(v1,12) = 1/ E[|Xo — Yol|%.

Sig = (c, Zy(c)), alors sa distorsion s’écrit (voir Proposition 3) :

mwmmz¢ﬁmwmrmv

1<i<k

=¢mmmwrnm

1<j<k

2
< \/E<1r2]12k(|lxo — Yol + || Yo _CjH))

. 2
= (1% = Yoll + min, Yo — ;)
< \/E||Xo — Yo2 + \/]E min Yo — j

(en utilisant I'inégalité de Cauchy-Schwarz)

= pw(v1,12) + D(vz,q)l/z.

(En effet pour a,b > 0, on a E(ab) < (Ea”Eb?)!/? par I'inégalité de Cauchy-
Schwartz, alors E(a + b)?> < Ea? + Eb? + 2(Ea?)/?(Eb?*)/?2 = (VIEa? +
VEbB?)?, d’ott \/E(a +b)2 < VEa? + VEbB?).

Par symétrie des roles de vy, 15, on a pareillement D(v5, q)l/ 2 < ow(vi, 1)+
D(v1,q)'/?, d’ott la proposition. O

On considére a partir de maintenant le quantifieur empirique optimal PPV
g, défini via (4.1) par ses centres ¢, = () 1,...,C) ;) ¢

n = (e Pv(cy)).-

Théoréme 12. La distorsion D(u,q}) — D*(u), P-p.s. et ED(u,q;) — D*(p).
Le quantifieur q; est donc consistant.
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Démonstration. (Rappel : 'ordre k des quantifieurs est fixé et omis dans
les notations). Si g* est un quantifieur optimal PPV pour la loi pu (i.e.
D(u,q*) = inf; D(u,q) = D*(u)), la Proposition 5 nous donne en consi-
dérant le quantifieur empirique g
0 < D(u,q;)"% = D* ()2

= [D(,43)"2 = D(pn, @)/ + [ D, 3)1 72 = D (1, 4")?]

< | DG, gi)"2 = D(pun, gi) 2| + | Dy, 4")/2 = D(p, )2

< 20w (H, pin)- (4.7)

En effet, D(un,q}) < D(un,q*) car g* est un quantifieur PPV et g}, est
le quantifieur PPV optimal par rapport a . Par ailleurs, la Proposition 5
peut étre appliquée deux fois car g}, et g* sont tous les deux des quantifieurs
PPV.

Or, pw (pn, ) — 0, IP-p.s. par le Théoreme 4.

Pour prouver la seconde assertion, introduisons .# (y, i, ) ’ensemble (aléa-
toire) des probabilités sur RY x RY admettant y et s, comme marginales.
Par définition, le carré de la distance de Wasserstein entre p et y,, s’écrit

2 _ . 2
Phlprn) = it [yl dy).

C’est une variable aléatoire car y;, est une mesure aléatoire.

Soit C une constante arbitraire strictement positive et soit .o’ le sous-ensemble
de R? x R défini par

o ={(xy) e R x R? : max |||, |ly|}) < C} .
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On a, pour tout v € .Z (i, pn),
— y[[*v(dx,d
Jor o % = yIPv(d, dy)
= [ Ix=ylPvdx,dy) + [ llx—ylPv(dxd
| lx=ylPv(dx,dy) + [ flx—ylPr(dx,dy)
< ~ylPudx,dy) +2 [ JxlPr(drdy) 2 [ ylPr(dx,d
< [l —vlPv(dx,dy)+2 [ |x|Pr(dx,dy) +2 [ ylPr(dx,dy)
(car [l = yl? < 2/1x|* + 2]y )
< —y|[*v(dx,d
< [ lx=ylPv(dx,dy)
+2/]Rd (Bl YNSTICEY) +2/]Rd %121 <c 1y >cv(dx, dy)
2 [Py () 2 [ 1Py <cv(dv, dy)
< — y[[*v(dx,d
< [ lx—ylPv(ax,dy)
2 [ I IPcp(dx) +2C% (vl > ©)
£2 [ V1P cma(dy) +2C% (] > €)

Ainsi, en appliquant I'inégalité de Markov, il vient

Lo e = ylPv(d, dy)

R4 xR

< —y|?v(dx,d

< [ e =ylPv(ax,dy)
2 [ lPL () +2 [ 1Py i (dy)
+2 [ AyIPNyy s (dy) +2 1 lP s cp(dx).

R4 R4

En prenant l'infimum a droite sur .# (u, u,) puis 'espérance des deux co-
tés, on en conclut que

Bl (o) SE it [ e ylPu(dxdy) 8 [ Il cp(dn).

(En effet E [p4 fdpn = [ fdu pour f qui est p-intégrable).

Pour C > 0 fixé, le premier terme du membre de droite tend vers 0 lorsque
n tend vers l'infini d’apres le Théoreme 4 et le théoréme de convergence
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dominée. En effet

n= inf / x —y|/*v(dx,d
= nf ] I yifvdxdy)

S /w Ix = yl[*v(dx, dy) = pfy (pn, ) = 0, P —p.s.

Par ailleurs 77, < 4C? a cause de la définition de .27 et du fait que || x — y||?> <
2||x]|? + 2||y||*. Donc E#, — 0 par convergence dominée.

Puisque [p4 [|x[|*4(dx) < oo, le second terme peut étre rendu arbitraire-
ment petit en prenant C suffisamment grand. Au final, Ep3, (i, un) tend
vers 0. Il reste a voir que le résultat de convergence souhaité, ED(u,q}) —
D* (), est alors une conséquence facile de Ep?, (i, it,) — 0 et de l'inégalité
(4.7). En effet, par (4.7)

D(u,q5) < D*(1) + 4% (1, tn) +4(D* (1) 20w (1, ).
Alors

0 < D(p,q5) — D*(p) < 43y (1, ptn) + 4(D* (1)) 20w (1, pin)

et en prenant l'espérance, puisque

E((D*(1)" 20w (1, 1n)) = (D*()) " *Epw (1, 1tn) < D* (1) (Bpw (1, pn)*)*?

tend aussi vers 0 quand n — oo, on obtient le résultat souhaité. O

Analysons maintenant la vitesse de convergence de g;,. Pour ce faire, nous
supposerons qu’il existe une constante R > 0 telle que ||X|| < R, P-pss.
Cette hypothese est parfois appelée contrainte de pic dans le vocabulaire
de la quantification.

Théoreme 13. S'il existe une constante R > 0 telle que || X|| < R,P-p.s., alors
pour tout ordre k > 1,

12kR?
N

0 <ED(u,q,) — Di(p) <

Enongons tout d’abord, sans preuve, un outil fondamental dans 1’étude de
la mesure empirique :
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Lemme 7 (PRINCIPE DE CONTRACTION). Soit 074, ...,0, des variables aléatoires
i.i.d. de loi de Rademacher, indépendantes de X1, ..., Xy, et soit ¥ un ensemble
borné de fonctions réelles, définies sur RY. On a

E sup — Zal|f )| < Esup - ZO’,

fez fez i3

Remarques préliminaires.

1. Si ||X]|| < R, P-p.s, alors les centres optimaux ¢* sont dans Bg :=
B(0,R). En effet, si ¢ € R? avec ||c|| > R et p est la projection sur Bg,
alors, par définition de la projection, on a, Vx € By,

lx = el = [lx = p(e)I? + Ip(c) — el = 2{x = p(c), c = p(c))
> [lx = p(o)]I*.

On a donc une distorsion plus petite pour des centres dans Bg.
2. 51X ~pu,ona

W(u,c) =E min ||X—(:]H2

1<j<k

_ 2 . o . 112
= E|X|P +E min (=2(X,¢)) +[l¢1).

Ces deux observations nous conduisent a la conclusion suivante : plutot
que de minimiser W (y, -) sur R%, il suffit donc de minimiser, sur Bf,

A o : _ 2
Wi €) = E min £, (X), avec fe(x) = ~2(x,€) + el

La méme observation est valable en remplagant u par u, et en se rappelant
que la distorsion empirique est une espérance par rapport a la mesure
empirique py, i.e.

W (pn, c) : Z min fc X;).

l<]<k
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Démonstration du Théoréeme 13. On a

= W(p, cy) — inf W(y,c)

ceBk
=W(p,c;) - Cler}gfk W, c)
— [W(V/CZ) — (,un/CZ)] [ ll'lf W(]/ln/ )_ lnf W(“l/l, )}

cGB CEB
(par définition de c},)
< sup (W(p, ) = W(pn, c)) + sup (W(pn, ¢) = W(u,c)).
ceB% ceB%

Dans la suite, nous cherchons a majorer le terme

sup (W(pn, c) — W(y,c)),

k
cEBR

I'autre terme se bornant de facon similaire. En utilisant un n-échantillon in-
dépendant annexe X7, ..., X, et un argument de symétrisation similaire a
celui employé dans la preuve du théoreme de Vapnik-Chervonenkis (Théo-
reme 3), il vient

E sup (W(un,c) — W(u,c))

cEBk
=E E (X
e 7 (0 (050~ i, £()

n

=E —]E —
0 | & (min e (X0 = i fo (X)X X
R

Ainsi, en observant que sup E(-) < Esup(-),

E sup (W(pin,¢) — W(p,c)) < Esup — Z min fc.(X;) — min fc(X7))

cEBﬁ Bk n: =1 1< <k 1<]<k

< 2E sup — ZO’Z min fc (X;).

ceBk ni= 1<j<k
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Pour le traitement de ce dernier terme, nous allons procéder par itération

sur l’ordre k des quantifieurs, en nous appuyant sur le principe de contrac-
tion. On note

Sk = sup Za min fc,(X;).

( Ck)GBk 1<j<k

Cas k = 1. Comme ||X|| < R:

1 n
51 =E sup — ZO'I'( —2<X1',C> + ||CH2)

CGBR n; =1
llell? ¢
< 2E sup — ZO’I Xi,c)+Esup —— ZO}
CEBRnizl ceBy " 3

n
)0

i=1

R?
< 2E sup i(X;,¢) + ]E
CGBanl l Z

RZ
<2Esup — ) o0i(Xjc)+—
cey ; AN

(par l'inégalité de Cauchy-Schwarz).

Ainsi, en utilisant que pour tout u € Bg on a sup..p (1, c) = Rlul|,

RZ
S1 < 2E sup — ‘< ZO’ZXI,C>‘

c€BR n \/—
2R R2
=—E 0; X —
n ; il Vn
E|| X]|?
< 2R —H ” +

NG
(par l'inégalité de Cauchy-Schwarz)
2
<
—_— \/ﬁ

Cas k = 2. Comme min(a, b) = %5t — @, on a

S=F sup o efo (X0 + f(X) ~ 1fe () fi (59

(c1,62)€B%
1 n
<SS H+E sup o) 0i|fo (Xi) = fo (Xi)].
2 &N T
(crer)eBy 2 i1
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En appliquant le principe de contraction, on obtient

% fgi(fcl(xi) — fe,(Xi)) <25

i=1

S <S1+E sup

(Cl,Cz)EBlz{

Cas k = 3. Comme S; < 254,

< 51+52+S1+52

B 2

< 3S5;.

En itérant le procédé, on trouve

Finalement,

d’otu le théoréme.
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Troisieme partie

Statistique paramétrique
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Chapitre 5

Statistique paramétrique
asymptotique

Dans tout le chapitre, (", {Py}gce) désigne un modele statistique pa-
ramétrique avec 57 C R? et ® C RF. Le paramétre d’intérét est g(0) avec
g : ©® — IR? une fonction connue. L'objectif consiste dans un premier temps
a estimer g¢(0) a partir de 1'observation X = (X, ..., X,) issue du modele;
puis dans un second temps a faire des tests d’hypothése sur le parametre
inconnu g(6).

5.1 Rappels sur les estimateurs

Définition 8. Une statistique est une fonction borélienne de I'observation X =
(X1, ..., Xn). Un estimateur de g(0) est une statistique qui prend ses valeurs dans
un sur-ensemble de g(©).

Dans la suite, [Ey désigne l'espérance sous une loi paramétrée par 0 et
VyZ désigne la matrice de variance-covariance (ou la variance si s = 1) de
Z € 1L%(pg) sous la loi pg, i.e. pour une variable aléatoire intégrable Z a
valeurs dans R® et de loi uy,

EyZ = / Wiip(dx) et VoZ = By (Z — BoZ) (Z — EpZ)T
— EoZZT — (EgZ) (BeZ)T.

Une statistique S(X) est d’ordre g € IN si S(X) € L9(py) pour chaque
0e0,ie.

Eo SOOI = [ IS)]l"he(dx) <o, WO €.
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Définition 9 (Biais). Soit § un estimateur d’ordre 1. On appelle biais la fonc-
tion 0 +— Eg§ — g(0). L'estimateur § est dit sans biais lorsque cette fonction
est nulle, i.e. Eg¢ = g(0),V0 € ©. Il est asymptotiquement sans biais lorsque
lim, 4+ Eg¢ = g(6),V0 € O.

Exemples. Dans les exemples qui suivent, on se place dans le cadre d'un
n-échantillon X = (X, ..., X,) iid., deloi Py = Q;".
1. Supposons que 7 C R et que la probabilité Qg admette un moment
d’ordre 2. La variance empirique S2

1 & S
Si=—2 (Xi—X)?=—3 X7 —(X)?,
i=1 i=1

est alors un estimateur biaisé de g¢(6) = VyXj. En effet, on a (exercice

facile)
n—1
—8(0).

Voila pourquoi, lorsque n > 1, on considere plutot I'estimateur

EgS2 =

2= "2 1 yxox,
n n— 1 n n— 1 = 1 n 7
appelé variance empirique corrigée qui, lui, estime sans biais g(6) =
Vg Xj. Notons également que la variance empirique S% est asympto-
tiquement sans biais.

2. Supposons que chaque X; suive la loi %([0,6]), & > 0. Dans ce mo-
déle, l'estimateur 6 = 2X,, obtenu par la méthode des momenAts (cf ci-
dessous) est sans biais. Il n’en est pas de méme pour 'EMV 6 = X,
(cf ci-dessous), car Eypff < 6. On montre d’ailleurs facilement que

Eof = 146.

Maximum de vraisemblance. On suppose dans ce paragraphe que le mo-
dele (", {Py}oco) est dominé par une mesure o-finie v, avec # C R? et
® C R~

Définition 10. La vraisemblance du modele (7", { Py }9co) est I'application L,, :

H" x © — Ry telle que, pour chaque 8 € ©, L,(-;0) : A" — Ry est un
élément de la classe d’équivalence de la densité de Py par rapport a v.
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Dans un modele a échantillonnage i.i.d., I'expression de la vraisemblance
se simplifie.

Proposition 6. Soit L la vraisemblance du modele (,{ Qg }oco) dominé par la
mesure p. Si, pour chaque 6 € ©, Py = QF", alors la fonction

L, : #"x0® =R,
(x1,...,x0,0) —TIiL; L(x;;0)

est la vraisemblance du modele (", { Py }gco) pour v = u*".

Démonstration. 11 suffit de remarquer que, pour chaque 6 € ©, I'application
n
(x1,...,%xp) — HL(xi;O)
i=1

définie sur ", est une version de la densité de Q" par rapport a v =
®Xn
uen, [

Les deux cas les plus classiques en échantillonnage i.i.d. sont ceux ot y est
la mesure de comptage sur 77 (cas discret) ou la mesure de Lebesgue (cas

continu). On utilise alors souvent la notation Pg(X; = x) (cas discret) ou
fo(x) (cas continu) en lieu et place de L(x;6), de sorte que

Ln(xll---/xi’ll H]PQ _xl

pour le cas discret et

pour le cas continu.

Définition 11. Un estimateur du maximum de vraisemblance (EMYV) est un es-
timateur 6 qui vérifie

0 e Argmax Ly, (X1, ..., Xy;0).
0c®

Remarques.
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1. En pratique, la vraisemblance se maximise en 6 a Xy, ..., X, «fixés »
et I'éventuel EMV s’écrit comme une fonction de X3, ..., X,,.

2. Ni l'existence, ni l'unicité des EMV ne sont en général acquises, mais
on parle souvent par abus de «'EMV » au lieu de dire « un EMV ». De
plus, sous réserve d’existence, 'EMV peut ne pas avoir de représen-
tation explicite ; dans ce cas, le recours a une méthode d’optimisation
numérique est nécessaire afin de déterminer sa valeur en I'observa-
tion.

3. Un EMV, noté 6, est donc un estimateur du parametre 6 du modele. Si
le parametre d’'intérét est ¢(6), avec g une fonction borélienne connue
définie sur ®, on considere I'estimateur ¢(0) dit estimateur plug-in. Par
abus de langage, g(f) est parfois qualifié ’'EMV de g().

4. Lorsque X = (Xj,...,Xy) est un n-échantillon i.i.d., on préfere par-
fois calculer 'EMV en maximisant la log-vraisemblance !

n
log Ly(x1,...,x4;0) = Zlog L(x;;0),
i=1
pour (x1,...,X,) € " et 0 € O. L'intérét pratique est clair, I'étape
de maximisation étant en principe plus facile a mener.
5. Sous certaines conditions de régularité du modele, 'EMV possede de
bonnes propriétés (existence, unicité, convergence, etc.).

Méthode des moments. Dans le cas particulier o1 le parametre d’intérét
¢(0) est un moment de la loi Qg ou, par extension, une fonction de plu-
sieurs moments de cette loi, la méthode des moments permet de construire
des estimateurs naturels, en substituant a Qp la mesure empirique issue de
I'échantillon. Ainsi, si g(0) = Y (g1(0),...,84(0)), ot g;(0) = Egd;(X1) et
Eg||®;(X1)|| < o0, la méthode des moments consiste a utiliser 1'estimateur

G= (%é@l(x,-),...,%é@q(xi)) .

Plus généralement, la méthode des moments propose d’estimer un para-
metre 6 comme la solution (si elle existe) d'un systeme d’équations

1 .
- Y @i(X;) =Eg®i(X), j=1,...,q, (5.1)
i=1

1. Tous les logarithmes sont des logarithmes népériens.
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pour un choix fixé de fonctions ®;. Le choix de ®;(x) = x/ correspond
a la méthode des moments la plus simple. Lorsque le parametre 6 est k-
dimensionnel, on cherche usuellement a résoudre le systeme induit par les
k premiers moments de la loi Q.

Remarque. Dans le cas particulier o1 la loi Qy est a support fini de taille k,
les k premiers moments (théoriques) de cette loi caractérisent entierement
la distribution.

Avantage : L'estimateur a souvent de bonnes propriétés, obtenues via la
loi des grands nombres ou le théoreme central limite. Par ailleurs, pour les
modeles issus de la famille exponentielle de rang plein?, EMV et estimateur
des moments coincident.

Inconvénient : Pour utiliser cette méthode, il faut soit pouvoir exprimer
g(6) comme une fonction des moments de la loi Qp, ce qui n’est pas tou-
jours possible (ou facile) ; soit étre capable de résoudre le systeme des équa-
tions de moment. De plus, cette approche est en général moins efficace (en
termes de variance asymptotique) que la méthode du maximum de vrai-
semblance.

Exemples.

1. X = (Xy,...,Xy) iid. de loi commune Poisson Z2(6), 6 > 0. Ici
encore, 8 = Ey X3, et 'on choisit donc § = X,,. Mais comme 6 = VX3,
on peut aussi prendre § = 52

2. X = (Xy,...,Xp) 1id., de loi commune % ([0,6]), 6 > 0. 1l est fa-
cile de voir que 6 = 2EyX;, d’out I'estimateur 6 = 2X,,. Noter que,
pour ce modele, I'estimateur obtenu par la méthode des moments est
différent de 'EMV.

Risque quadratique et décomposition biais-variance. La proximité entre
I'estimateur et le parametre d’intérét peut étre évaluée par leur distance
dans IL2(Py).

Définition 12. Soit ¢ un estimateur d’ordre 2.

1. Pour 0 € ©, le risque quadratique de § sous Py est

R($:0) =Eq g —g(0)|°

2. Le modele de la famille exponentielle n’est pas détaillé dans ce document
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2. § est dit préférable a I'estimateur §' d’ordre 2 lorsque
R($;0) <R(¢;0), VOcO.
On a la relation fondamentale suivante (dite décomposition «biais-variance ») :
R(4:6) = [IEog — g(6)|* + Eollg — Eogll*, 6 < ©. (5.2)
En effet,
A A A A 2
R(8;0) = Eg [|§ — Eog + Eo8 — g(6) |l
= Ep [|¢ — Eogll” + Eq || Eog — g(6)|* +2Eq < § — Eog, Eog — g(6) >
Or, comme dans le produit scalaire le 2éme terme est constant, on obtient :
Eo < §—Egg, Eod —g(0) >=<IEg(§ —Eog) Eog —g(0) >=<0,Egg —g(6) >=0,

ce qui prouve la décomposition biais-variance.

En particulier, pour p =1,

R($;60) = biais?(0) + V4.

L'intérét de la décomposition (5.2) est qu’elle montre que, pour un risque
quadratique donné, abaisser le biais revient a augmenter le terme de va-
riance [Bg||¢ — Eg¢||?, et réciproquement. Il est alors naturel de s’intéresser
aux estimateurs qui minimisent uniformément la variance parmi les esti-
mateurs sans biais de g(6).

Définition 13 (VUMSB). Un estimateur ¢ d’ordre 2 est de variance uniformé-
ment minimum parmi les estimateurs sans biais (VUMSB) s’il est sans biais et
préférable a tout autre estimateur sans biais d’ordre 2.

L'existence d'un estimateur VUMSB n’est en général pas acquise. Pour
I'instant nous allons néanmoins noter que la variance de tous les estima-
teurs sans biais admet une borne inférieure, la borne de Cramer-Rao (5.5),
que nous allons expliquer dans le paragraphe ci-dessous brievement, sans
préciser de bonnes hypotheses et seulement dans le cas ® C R (k = 1).
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Information de Fisher et borne de Cramer-Rao. On suppose a nouveau
que le modele (", {Py}gce) est un modele statistique dominé par une
mesure o-finie v, avec 2 C R? et ® C RF. Notons

In(6) = [(aae log L (X, 9)) }

Cette quantité s’appelle 'information de Fisher.

Notons que sous de « bonnes » hypotheses d’interversion entre dérivées et
intégrales et en supposant que le support S de la fonction (x1,...,x,) —
Ly(x1,...,%n,0) est le méme pour tout 6 € ©, on obtient :

aa_g n(xlr---/xnle)
Ln(xl,. . .,xn,e)

0
= /@Ln xl,,,,,xn,9)1L(x1,,..,xn,9)>0dv

/ —Ln(x1,...,%n,0)1s(xq,...,x5)dv

Ey Ly(x1,...,xy,0)dv

[aag log L, (X, 9)]

= _—1=0. (5.3)

Par conséquent, sous ces hypotheéses, I'information de Fisher prend la forme
équivalente

I,(60) = w( aag log L (X, 9)) (5.4)

Soit § = h(X) un estimateur sans biais de g(0). Toujours sous de bonnes
hypotheses d’interversion entre dérivées et intégrales, I'inégalité suivante

a lieu :
Vo(g) > (gln((ge)))z. (5.5)

C’est la borne de Cramer-Rao.

Pour la prouver, on remarque que h(Xy,...,X,) étant sans biais, on a

/h X1,...,Xn)Ln(x1,...,x,,0)dv pour tout 6 € O.
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On calcule :

0
¢'(0) = %/Sh(xl,...,xn)Ln(xl,...,xn,G)dv

0
— /Sh(xl, ) <%Ln(x1, e, Xn, 9)>d1/

0
= s h(x1,...,xn) <@ log L (x1, .. .,xn,B)) Ly(xq,...,%x,,0)dv

0
=, (h(x) (ﬁ log Ln(X,()))).
En tenant compte de la remarque (5.3)
d d
J'(6) = Eq (h(x) {(@ log Ln(x,9)> — I (@ log Ln(x,e))} )
Et comme Eyh(X) est constante, on déduit finalement

g/(0) = Eq ([n(X) — Eoh(X)| [(% log L (X, 0) ) — Eg (% log L(X,0)) |).

L’inégalité de Chauchy-Swartz conduit alors a

18'(0)] < \/We(aa—glogLn(x,e)) x v/ Vgh(X)

ce qui prouve la borne (5.5).

Exemple. X = (Xy,...,X,) iid., de loi commune #(0), 6 € (0,1). L'esti-
mateur X,, de 6 est sans biais, et sa variance vaut

_ VoX (16
VoXy =~ = (n ),

car les variables aléatoires Xj, ..., X, sont indépendantes et de méme loi
B(8). Par suite, d’apres la décomposition biais-variance (5.2) :

En augmentant 7, l'estimateur X,, gagne donc en précision. Ce n’est pas
le cas pour l'estimateur X;, de risque quadratique R(Xy;0) = 0(1 —6).
Comme on pouvait s’y attendre, X, est donc préférable a Xj.
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Par ailleurs, calculons l'information de Fisher. On peut commencer par
remarquer que dans un modele i.i.d., partant de (5.4), on obtient

1,(8) = Vg (% logﬁL(Xi,9)> - Vg( é ;—0 log L(Xl-,(?))

d
= nV, (@ log L(Xl,e)),
que l'on notera également nI(0). Dans le cas de variables de loi de Ber-
noulli, on obtient

log L(X1,0) = X11logf + (1 — X;1) log(1 — 6)

et
_ J _ X; 1-X5y\ _ X3
In(e) = WQ @log Ln(X, 9)) = nV9<7 ﬁ) = nvgm
., 6(1-6)  n
CU2(1-6)2 (1-0)
Comme ¢'(0) = 1, nous voyons que
¢ 8
Vol =55

La borne de Rao-Cramer est atteinte, donc X,, est VUMSB.

Exemple. X = (Xy,...,X;) de loi commune de Poisson P(6). Nous avons
déja présenté deux estimateurs sans biais pour g(0) = 6, a savoir X, et
2. Calculons l'information de Fisher I,,(8) = nI(8). En se servant de la
remarque (5.3) pour n = 1:

Wg(%log L(X1,9)> - ]Eg(a%log L(X1,9)>2
= [Ey [(;—6(—9 + Xilogf — logX1!>2}
(20T - fvon -

Alors l'information de Fisher I,,(6) = %. Notons que VX, = 1V,X; = %.
Comme g(6) = 6, nous pouvons conclure que

- _ 8(0)
VX, = 10

La borne de Rao-Cramer est atteinte, donc X, est un estimateur VUMSB.
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5.2 M- et Z-estimateurs

De fagon générale, les estimateurs sont souvent construits comme maximas
d’un critére empirique, ou de fagon souvent équivalente, comme « zeros »
(solutions d’une équation) d"un critére empirique (la dérivée du précédent).

Définition 14. Dans un modele (", {Py}oco), un M-estimateur a la forme
générale’
A 1 &
M € Argmax =Y mp(X;), (5.6)
pco i3
oit pour tout 6 € ©, x — my(x) est une fonction réelle connue (on peut autoriser
a valeurs dans R = [—o0, 4+00]).

Lorsque le critére est différentiable, on peut également chercher les points
critiques, d’ot1 la définition suivante d'un Z-estimateur.

Définition 15. Dans un modele (A", {Py}oco), un Z-estimateur noté 0% est
obtenu comme solution de I'équation

S

n
) e(Xi) =0,
i=1
oit pour tout 6 € ©, x — Pg(x) est une fonction vectorielle connue.

L’étude des M- et Z- estimateurs se fait dans un cadre asymptotique, lorsque
la taille d’échantillon grandit. Il est donc naturel d’élargir les définitions au
cas ol les conditions ci-dessus sont réalisées de fagon approchée, i.e. a o(1)
prés qui tend vers 0 lorsque la taille d’échantillon augmente. Noter que
les restes sont (en général) des variables aléatoires; il faut donc préciser le
type de convergence (généralement, en probabilités, ce que 1'on note par-
fois op(1)).

Les estimateurs de moment, sont en fait des Z-estimateurs. En effet, la
caractérisation donnée dans (5.1) indique que estimateurs de moment sont
des Z-estimateurs pour y(x) = ®(x) — E¢P(X) avec ® = (P, ..., Dy).

3. La notation Argmax désigne I’'ensemble des maximas (supremums) d"une fonction.
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Dans un modele a échantillonnage i.i.d., un estimateur du maximum de
vraisemblance est en fait un M-estimateur pour la fonction my = log L(+;0)
out L est la vraisemblance du modele (7, Qg). Par ailleurs, si 6 +— log L(; 0)
est différentiable, alors 'EMV est souvent défini comme Z-estimateur avec
g = VylogL(-;0). En fait, les EMV ne sont des M-estimateurs que dans
les modeles a échantillonnage i.i.d.. Cependant, dans les modeles qui ne
sont pas a échantillonnage ii.d., on peut construire des estimateurs du
maximum de pseudo-vraisemblance, qui sont des M-estimateurs. Méme si
le modele n’est pas a échantillonnage i.i.d., ces estimateurs ont parfois de
bonnes propriétés.

Un exemple plus exotique est donné par la médiane empirique.

Exemple. Supposons que s C R (i.e. d = 1) et que le parametre 6 est la
médiane de la loi Qy, i.e. Qg(X < 0) > 1/2 et Qp(X > 6) > 1/2. On se

place dans le cas d’une loi Qp sans atomes. On constate que la médiane
empirique, définie par

inf { € R 1Y 1o > 1}

’ n = X<t = 2
est un Z-estimateur (approché) de 6 avec g(x) = sign(x —6) = L,-p —
1, -¢. En effet, le critere vaut alors

%;%(Xz’) = %Hie {1,...,n}; X >9}‘—1—%Hie ,...,n%X :9}‘.

Comme la loi est sans atomes, le dernier terme est d’espérance nulle et par
la loi des grands nombres, il tend Py-ps vers 0. La médiane empirique §™ed
vérifie
. A n . A
Hz e{l,...,.n}X; > 9medH > 5 et Hz e{l,....n};X;i < OdeH >
c’est donc un zéro approché du critere.

n
2

On peut généraliser cet exemple au p-ieme quantile empirique, p € (0,1),
qui est un Z-estimateur approché pour la fonction ¢g(x) = L,<g — p.

5.3 Théoréeme de Wald

L'observation X = (X, ..., X,) contient de plus en plus d’information sur
la vraie valeur du parametre a mesure que sa taille 7 croit. De ce fait, on est
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amené a s’intéresser aux propriétés asymptotiques des estimateurs. Dans la
suite, sauf mention explicite du contraire, toute propriété de convergence
sera entendue pour une taille d’échantillon n qui tend vers l'infini.

Définition 16. L'estimateur ¢ est dit consistant lorsque
P
§—¢(0), VOcO.

Exemple. L'estimateur X,, de ¢(0) = [E¢X; construit avec un n-échantillon
iid. X = (Xq,...,X,) € R satisfaisant Eg||X;|| < oo est consistant car,
d’apres la loi faible des grands nombres :

Xn i EyX;, VO € O.

Pour d = 1, il en est de méme de la variance empirique des que IE@X% < 0
puisque, toujours par la loi faible des grands nombres,

2 Bvx,, Voeo.

Remarque. Consistance et absence de biais asymptotique ne sont pas les
mémes notions. Par exemple, pour se convaincre qu'un estimateur consis-
tant n’est pas nécessairement asymptotiquement sans biais, considérons le
modele statistique (R", {N(6,1)%"}gc (1)) et I'estimateur 0 de 0 issu de
X =(Xy,...,Xn) ~ Py =N(6,1)%" défini par

1
B(— /i) <0}
ot @ désigne la fonction de répartition de la loi N'(0,1). L'estimateur X,
est consistant d’apres la loi faible des grands nombres. En effet, comme
8 > 0, pour chaque ¢ > 0 :

0=X,+

1 _
. - _ _ . < _

On en déduit la consistance de 6. Or, comme X, suit la loi (0,1/n) et
0<1:

P(X, <0)= / exp —
1/27r>< n

r/ Ve 24t - a(—0y/m)

> O(—+/n).
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En conséquence,

Eg¢f = EgX, + Po(X, <0) >0+1,

1
®(—/n)
donc 8 est biaisé, et méme asymptotiquement biaisé.

On se place a présent dans le cas d'un n-échantillon X = (X, ..., Xj) i.id.
Le théoreme de Wald est le résultat classique qui donne la consistance des
M-estimateurs (5.6). Historiquement, Wald a prouvé en 1949 la consistance
du maximum de vraisemblance par cette méthode. Notez qu’il en découle
aussi la consistance des Z-estimateurs en remarquant que ce dernier est
un M-estimateur pour my = —||¢g||. Nous 1’énoncons ici dans une forme
simplifiée et renvoyons au livre de van der Vaart pour des hypotheses plus
générales.

Théoreme 14 (WALD). On suppose que
a) pour tout x, 0 — mg(x) est continue;
b) pour toute boule ouverte U C © assez petite, Esupy o, my (X1) < +00;
c) l'espace © est compact.
Alors Uestimateur 0™ défini par (5.6) converge en probabilité vers I'ensemble des
maxima de 6 — Emg(Xq).

Démonstration. On note @y = Argmax, g Eng(X;) I'ensemble des maxima
et on suppose que cet ensemble est non vide (sinon il n’y a rien a prouver).

Fixons 0 € @ et (Uj);>1 une suite de boules ouvertes autour de 6 qui
décroit vers {0}. La suite (Supf)’eu]- mg (x))j>1 est une suite décroissante,
minorée par my(x) et d’apres a) elle converge vers my(x). D’aprés b), le
théoreme de convergence monotone s’applique et donne la convergence de
E SUPgrcyy, mg(X1) vers Emg(X7).

Supposons que 6 & @y, i.e. Emy(X;) < supy g Emgy(X1). D'apres le résul-
tat de convergence qui précede, il existe une boule ouverte Uy autour de
0 telle que Esupy ;Mg (X1) < supg g Emg(X1). Fixons ¢ > 0. Comme
I’ensemble B, = {6 € ©;d(6,0)) > €} est compact et recouvert par I'union
des boules Uy pour 6 € B, on peut extraire un sous-recouvrement fini
Ug,, ..., U, d’ou il vient
1 & 1 & 1 &
sup — Y_mg(X;) <sup =) _ sup my(X;) < max = ) sup my(X;).
6B, " (=1 6cB. " i=107cly lsj=rni3 0'clp,
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Par la loi des grands nombres (qui s’applique sous I’hypothese b)), le terme
de droite converge IP-presque stirement vers

max E sup my(X;) < sup Emy(X;) = Emg,(X1),
I<j<r 0'els, )

pour tout 6y € ©p. Ainsi, si 0M € B, alors

— Z mam(X;) < sup — . Z mg(X;) < Emg,(X1) = Z mg,(X;) + Ry,
0eB, " =1

Rn = ]ETI’I()O(Xl - — Z mgo )
1 1

tend IP-ps vers 0 en utilisant a nouveau la loi des grands nombres (cette
fois sur mg, au lieu du sup). Ainsi,

{9M€Bg}c{ ZmeM i) <R, +sup— 27’719 }:{ano},
oco 1
par définition de QM. La probabilité de cet évenement tend vers 0, ce qui
termine la preuve. O

Remarque : Dans le cas du maximum de vraisemblance d"un n-échantillon
X = (Xy,...,Xp) 1id., on a my =log L(-;0) et lorsque le modele est iden-
tifiable, I’ensemble des maxima ®y de la fonction 6 +— [ElogL(Xj;0) est
réduit au « vrai » parametre. En effet, notons 6* le parametre de la loi de
X, i.e. on travaille sous E = [Ey«. Par ailleurs, supposons pour simplifier
les notations que la loi commune des X; a la densité fy« (par rapport a une
mesure dominante ). Alors

¢(0) :=ElogL(Xj;0) /logfg ) for (x) p(dx)

et par ailleurs

£(0) ~ 1(0°) = / log 7102 fe*(x)u(dX)

/ ol Ju(dz) =

d’apres l'inégalité de Jensen et car fy est une densité. De plus, l'inégalité
ci-dessus est stricte, sauf si fg = fp« presque stirement. Dans un modeéle
identifiable, on obtient donc £(0) < ¢(0*) avec égalité seulement en 6 = 0*.
La consistance de I'EMV est donc une conséquence du théoreme de Wald.
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5.4 Vitesse de convergence et loi limite

La consistance ne doit étre vue que comme une propriété minimale que
doit satisfaire un estimateur. Elle ne permet cependant pas de préciser 1'er-
reur commise, d’ott la définition qui suit.

Définition 17. Soit (vy,),>1 une suite de réels positifs telle que v, — —+o0. L'es-
timateur § est dit de vitesse vy, si, pour chaque § € © C R¥, il existe une loi £(0)
sur RP différente de la loi de Dirac en 0, appelée loi limite de §, telle que

on (3 — 5(0)) 2 0(9).

Si toutes les lois ¢(0) sont gaussiennes, § est dit asymptotiquement normal.

La qualité d"un estimateur est ainsi évaluée sur sa vitesse car il est alors
d’autant plus proche de g¢(6) qu’elle est rapide, mais aussi sur la variance
de la loi limite, qui doit idéalement étre faible afin que l’estimateur se
concentre sur le parametre d’intérét.

Exemples.
1. X=(Xyq,...,Xy) iid., de loi commune %#(0), 6 € (0,1). L'estimateur
0 = X, de 0 est consistant. Il est aussi asymptotiquement normal de
vitesse /n car, pour chaque 6 € (0,1) :

Vi (% — 0) 2 A 0,001 — 9)),

d’apres le théoreme central limite. Noter que la variance de la loi
limite prend ses valeurs les plus faibles lorsque 6 est proche de 0 ou
de 1 et ses valeurs les plus grandes lorsque 6 est proche de 1/2. De ce
fait, 'estimation de 6 par X, est d’autant meilleure que 6 est proche
de 0 ou de 1 car la loi limite de I’estimateur X, est alors trés peu
dispersée.

2. X = (Xy,...,Xy) iid., de loi commune £(0), 6 > 0. Ici encore,
l'estimateur § = X, est consistant et asymptotiquement normal de
vitesse \/n, car

Vi (% — 0) 2 Ar(0,0),

toujours d’apres le théoreme central limite.
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3. X =(Xy,...,Xy) iid., de loi commune % ([0,0]), 0 > 0. Il est facile
de voir (exercice) que I'EMV 0 = X(n) est consistant et de vitesse n,
car

H(X(n) — 9) .iﬂ) Z,

ot —Z ~ &(1/0). (Suggestion : calculer la fonction de répartition
de n(X(,) — 0). ) De ce point de vue, il est plus performant (malgré
son caractere biaisé) que 'estimateur 2X,, obtenu par la méthode des
moments, qui ne converge qu’a la vitesse /1.

Pour fixer les idées, on suppose dans la suite que 'estimateur 0 de 6 est de
vitesse vy, i.e.

on(6—0) 2 p(8), voco, (5.7)
avec £(0) une loi sur R¥ différente de la mesure de Dirac en 0 et v, — +co.

La loi de I'erreur renormalisée v, (0 — 6) est proche de la loi £() pour les
grandes valeurs de n. Or, £(6) est inconnu car 6 est inconnu, donc comment
peut-on préciser cette erreur d’approximation ? De plus, comment exploiter
cette propriété asymptotique lorsque le parametre d’intérét est g(0) ? Sous
réserve d’hypotheéses supplémentaires, nous allons examiner de quelle ma-
niere il est possible d’apporter des réponses a ces questions. Commengons
au préalable par énoncer le lemme tres utile suivant dont la preuve, facile,
(passant par les fonctions caractéristiques) est laissée a la lectrice.

Lemme 8 (Lemme de Slutsky). Soit (Z,),>1 et (Yn)n>1 des suites de variables
aléatoires a valeurs dans R* et RY telles que (Z,),>1 converge en loi vers une
variable aléatoire Z et (Yy,),>1 converge en loi vers une constante y € RY. Alors,
la suite des couples ((Zn, Yn))n>1 converge en loi vers le couple (Z,y).

Le plus souvent, on applique a cette convergence jointe (Z,, Y,,) —<5)(Z,y)
une fonction continue /& (somme, multiplication, etc.) et 'on en tire que
W(Zn, Yn) —Z P 1(Z,y).

On notera en particulier que la convergence (5.7) implique que 8 tend vers 6
en probabilité. En effet, comme v;,;! — 0 lorsque 1 — o0, alors par le lemme
de Slutsky : (v, 1, 0,(0 — 0)) —<F0)(0,£(0)), donc : v, ! x v,(§ — ) =
(0 —0) £ 0 x £(8) = 0. Donc 8 — 6 — 0 en loi et par conséquent aussi en
probabilité.
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Pour éviter tout malentendu, un rappel élémentaire : la convergence en
probabilité implique toujours la convergence en loi. La convergence en loi
de maniere générale n'implique pas la convergence en probabilité. Cepen-
dant, la convergence en loi vers une constante implique la convergence en

probabilité.

Estimation de la variance limite - cas de 6. Supposons qu’il existe une
fonction connue ¢ : ® — R* et une loi connue T sur R telles que pour
chaque 6 € ©, ¢(§) = o(0)T. Pourvu que 'on dispose d’un estimateur
consistant & de ¢ (6), on déduit du lemme de Slutsky que

A

(0a(6— 0),0) 25 (c(@)W,0(8)), VO €O,

ou W est une variable aléatoire de loi 7. Comme la convergence en loi est
préservée par la composition des fonctions continues,

On

A

-0 Ww, veceo.

Ainsi, la loi de l’erreur renormalisée (v, /8)(0 — 0) est proche de celle de T
pour les grandes valeurs de n. Cette derniere ne dépend plus de 6 inconnu.

Exemple. X = (X3,...,X;) ii.d., de loi commune #(0),60 € (0,1). Le théo-
réme central limite donne

ViZe — 02 AT (0,001 -6)), Vo e (01).
De plus, /X, (1 — X,;) est un estimateur consistant de /0(1 — 6) d’apres

la loi des grands nombres. La loi asymptotique de 1’erreur renormalisée est
donc NV (0,1), car

n —

gy % 6) 2 Ar(0,1), o € (0,1).

Ce résultat peut alors étre exploité pour encadrer le parametre inconnu 6.

Vitesse de convergence de g(f). Revenons au probleme plus général de
l’estimation du parametre g(0) € R”. Comme l'indique le résultat qui suit,
le calcul de la vitesse de l’estimateur g(#) est immédiat, sous réserve que g
possede les propriétés analytiques adéquates.
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Théoréme 15 (-METHODE). Soit (v,),>1 une suite de réels qui tend vers +oo,
z € RF et (Z,),>1 une suite de variables aléatoires a valeurs dans R* telle que
vy (Zy — z) converge en loi vers une loi £ sur R, Si g : RF — RP est de classe
¢!, de matrice jacobienne Jq alors v, (g(Zy) — §(z)) converge en loi vers la loi
J¢(2)€ sur RP.

Ainsi, si la fonction g est de classe € 1 ona, pour tout 6 € O,

o (3(6) — 5(0)) “W15(0)000),

J¢(0) désignant la matrice jacobienne de g évaluée en 6. De ce fait, g(0) est,
comme §, un estimateur de vitesse v, dés que la loi Jo(0)£(0) est différente
de la loi de Dirac en 0.

Comme dans la partie précédente, on peut préciser 1'erreur commise en
approchant g(8) par ¢(f) au moins lorsqu’il existe une fonction ¢ : ® — R*
et une loi T sur R telles que, pour chaque 6 € ©, /() = o (). En effet, si
J¢(8) est une matrice carrée (donc k = p) inversible pour chaque 6 € @ et &
est un estimateur consistant de ¢(6), on déduit du lemme de Slutsky que

() (30) - 3(0) T T, veeo,

car, g étant de classe €, J,(0) est un estimateur consistant de J,(6). La

loi de I'erreur renormalisée (v, /5)]4(8) 1 (g(8) — g(6)) est donc proche de
celle de T pour les grandes valeurs de n.

Remarque : Si k # p, on peut aussi se demander si la loi J¢(6)£(0) sur R”
s’écrit sous la forme o(6)t" ou T/ est une loi sur R? indépendant de 6 et
appliquer Slutsky:.

Exemple. X = (Xy,...,X,) iid., de loi commune #(6), 6 € (0,1) et 6 #
1/2.Si g(0) = 6(1 — 0) est le parametre d’intérét, la méthode des moments
nous conduit a considérer 1'estimateur ¢(Xj,). Le théoréme central limite et

la /-méthode donnent alors
Z(Py)

Vi (g(%) — 5(6)) T (1-20)A (0,601 - 0)) “E W (0,601 - 0)(1 - 26)2),

pour tout 6 € (0,1). Puis, la loi des grands nombres et le lemme de Slutsky
montrent que

\/Xn(1 - Xn?(1 ~0%,)? (2(%n) — 2(0) Y A (0,1), Vo€ (0,1)\{1/2).
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Remarque. L'utilisation de la §-méthode ne se limite pas a 'obtention de
lois limites pour les estimateurs de g(6). Pour s’en convaincre, considérons
un n-échantillon X = (X3, ..., X,) iid., de 101 commune & (), 0 > 0. Dans
ce contexte, la variance empirique § = S2 = Z ' 1 X? — (Xy)? est un esti-
mateur consistant de 6. Le théoréme central 11m1te multlvarié (appliqué au
couple de variables aléatoires (1 Yy | X2, X)) et la 6-méthode (appliquée
avec la fonction ¢(x,y) = x — y?) conduisent alors a

V(0 —6) 2 N (0,0 1 26%), V6 > 0.

En effet ﬁ(% Y X2 ]EgXl, . Lyn X — ]E9X1> converge en loi vers
N>(0, B) la loi gaussienne dans R? centrée, de matrice de variance-covariance
B avec by = VX%, byy = VXy, by = by = cov(X%,X;). D'apres la 6-
méthode appliqué avec ¢(x,y) = x —y%, on a

\/ﬁ(% i X7 — ( Z X> (EeX7 — (1E9X1)2))
i=1

converge vers le produit de la matrice ligne (% (EgX?,EgX1), g—‘; (EgX2,EgX1))
et du vecteur gaussien colonne ci dessus. C’est donc le produit du vec-
teur ligne (1, —2[EgX;) et du vecteur colonne gaussien (N, N;) centré de
matrice de variance-covariance B. La loi de ce produit est celle d'une va-
riable aléatoire gaussienne centrée dont la variance est by 1 +4([Ey X1)%byo —
4(IEgX1)b1 5. Il reste a substituer les moments de la loi de Poisson pour ob-
tenir que cette variance vaut 6 + 26°.

Démonstration du Théoréeme 15. Notons Z une variable aléatoire de loi ¢ sur
R¥ et ¢ la matrice (de taille p x k) définie pour tout y € R¥ par

1
= /0 Jo¢ (z+u(y —z)) du.
La formule de Taylor avec reste intégral nous donne, pour tout y € R¥ :

8(y) —8(z) =9y —2).
En effet, en notant ¢ = (g',...,¢”) et ¢' la i-eme ligne de la matrice 1,
1k 9ol

V=2 = [V Gl =2 ul— 20) (4~ 2)du
=

_ /1 a(u Hgl(za:u(y_z))du :gl(y) _gi(z), 1= 1,...,P-
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Donc

0n(8(Zn) — 8(2)) = vnp(Zn)(Zn — z). (5.8)

Dans cette égalité (5.8), v,(Z, — z) converge en loi vers ¢ par 1’énoncé. 11
reste & prouver que §(Z,) converge en loi vers la matrice constante J(z).

Tout d’abord, le vecteur (1/vy,,v,(Z, — Z)) converge en loi vers le couple
(0,¢) par le lemme de Slutsky. Alors, la fonction produit étant continue,
Zy—z=(1/v,) X v4,(Zy — z) converge vers 0 en loi, i.e. (puisque z est une
constante), Z,, converge en loi vers z.

Par ailleurs, 'élément (i,j) de la matrice ¢ est la fonction y — [; 523 ! ag (z+
u(y —z))du, qui est continue au point y = z par le théoréme de Convergence
dominée. En effet, ¢ étant de classe ¢, les fonctions y — g%(z +u(y —z))

sont continues et bornées dans une boule fermée au voisinage de z.

On en déduit que tous les éléments de la matrice ¢(Z,) convergent en loi
vers ceux de la matrice ¢(z) = J¢(z).

Finalement dans (5.8), /(Z,) converge en loi vers la matrice constante J¢(z)
et v, (Z, — z) converge en loi vers /. En appliquant encore une fois le lemme
de Slutsky, on déduit que la partie droite de (5.8) converge en loi vers

]g(z)ﬁ. l

5.5 Tests asymptotiques

Dans cette section, on considere le probleme de test d’hypothése sur le
parametre 0. Ainsi, dans le cadre du modele statistique (.7, { Py }9c@), on
se donne deux sous-ensembles @) et @, disjoints et inclus dans ® (on
n’impose pas que leur union soit égale a ®). Au vu d’une observation
X = (Xj,...,Xn) ~ Py, on veut décider si 6 (le vrai parametre) appartient
a @, ce sera I'hypothese dite nulle et notée Hp; ou s’il appartient a ©1, ce
sera '’hypotheése dite alternative, notée Hj.

Dans le cadre du probleme de test de Hy contre Hj, un test est une sta-
tistique T a valeurs dans {0, 1} associée a la stratégie suivante : pour 1'ob-
servation X = (Xj,...,Xy), 'hypothese Hy est conservée (respectivement
rejetée) si T(X) = 0 (respectivement T(X) = 1).
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Un test peut donc toujours s’écrire T(X) = Ixcgr, ot R est la région de
rejet. Il est parfois plus naturel de I'écrire sous la forme T(X) = 1j,x)cr,
ou h est une fonction mesurable appelée statistique de test. On dit aussi
souvent, en commettant un abus de langage, que R’ est la région de rejet
associée a la statistique de test 1(X).

Le risque de premiére espece du test T est la fonction définie sur ®p par

(L @0 — [0,1]
0 — EoT = Py(T(X) =1).

La taille du test est le réel a* défini par

a* = sup a(6).
0€®y

On dit que le test T est de niveau « € (0,1) si sa taille est inférieure ou
égale a a.

Le risque de seconde espeéce du test T est I’application définie sur ©; par

‘BI @1 — [0,1]
80— 1—IEgT = Py(T(X) =0).

A partir de 13, on définit la puissance du test comme la fonction 1 — 8,
c’est-a-dire I'application qui a chaque élément de ®; associe la probabilité
de prendre la bonne décision.

A défaut d’informations suffisantes ou appropriées sur la loi de la statis-
tique de test, on est amenés a définir la notion de test asymptotique.

Définition 18. Une suite de tests asymptotiques (Ty),>1 de niveau « € (0,1)
est une suite de tests qui vérifient

limsup sup EgT;, < a.
n—-+o00 @

La procédure de décision est calquée sur celle des tests a taille d’échantillon
finie. La seule différence est qu'un test asymptotique est construit pour
contrdler le risque de premiere espece, mais seulement asymptotiquement.
Dans ce contexte, il est raisonnable d’exiger une puissance asymptotique
maximale. C’est le concept de convergence décrit ci-dessous.
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Définition 19. Une suite de tests (Ty,),>1 est dite convergente (ou consistante)
au niveau « € (0,1) si c’est une suite de niveau w telle que

lim EyT, =1, V0 ¢€ 0.

n—-+oo

Ainsi, une suite de tests convergente a une puissance qui tend vers 1
lorsque ’échantillon devient grand.

Exemple. (Test de signe). Soit X = (X,..., X,) i.i.d. de loi commune Qy
sans atomes et de fonction de répartition Fy = F(- — ). On suppose que
la loi Qg admet pour médiane 6, i.e F(0) = Qu(X; < ) = 1/2. On veut
réaliser le test (unilatere) de Hy : & = 0 contre 'alternative Hy : 6 > 0.

Une statistique naturelle est donnée par la statistique de signe S, = n=1 Y Ix.~o.
OrEgS, =1—F(—0) := u(0) et VoS, = n=1(1—F(=0))F(—0) := 0(0) /n
donc par le théoreme central limite, \/n(S, — u(6)) converge en loi sous Py

vers N'(0,02%(9)).

Sous I'hypothese nulle, on a 1£(0) = 1/2 et ¢%(0) = 1/4, donc \/n(S,, —1/2)
converge en loi sous Py_q vers N (0,1/4). La suite de tests (T,),>1 qui
rejettent Hy lorsque X appartient a la zone de rejet

1
Ry, = {\/ﬁ(sn - 1/2) > EQlflx}/
avec g1, le quantile d’ordre 1 — « de la A(0,1), est une suite de niveau
asymptotique «.

Par ailleurs, la puissance 7, de cette suite de tests vérifie, pour tout 6 > 0,

o (6) = Ea(Ty) =Po(W(51 = 1/2) > 301-0)
_ Su—p(0) _ 391 — V(3 — 1(6))
=ky( v =R : =) )

1 q)<%ql—a - }/(56()% - Pl(@)))

+0(1)

ou @ est la fonction de répartition de la A/(0,1). Le terme de droite converge
vers 1 lorsque n tend vers l'infini car pour 6 > 0, on a u(8) = Qu(X; >
0) < 1/2. La suite de tests est donc convergente.
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Vitesse de convergence d'une suite de tests. En pratique, la notion de
convergence est trop faible pour qualifier I'optimalité d"un test, car c’est
une propriété qui s’avere assez répandue. Pour choisir entre deux suites
de tests, une approche plus intéressante consiste a considérer la puissance
calculée en des alternatives dont la difficulté augmente avec la taille de
I’échantillon.

Exemple. (Test de signe). Dans 1’exemple précédent, pour toute suite (6,),>1
de parametres dans l'alternative (i.e. 8,, > 0), la puissance du test vaut

ﬂn(en) -1— q)(%qloc - \/ﬁo(-l(je(f)) - F(_en))> _}_0(1)'

Si 6, tend vers 0 assez vite pour que /n(F(0) — F(—6,)) tende vers 0, alors
7(6,) converge vers w et le test de signe n’est pas capable de distinguer
l'alternative de I'hypothese nulle. Si 6,, tend vers 0 assez lentement pour
qu’au contraire \/n(F(0) — F(—6,)) tende vers 4o, la puissance tend vers
1 et l'alternative 6§ = 0, est facile a distinguer de I'hypothese nulle. On
comprend que le cas intéressant surgit dans un cadre intermédiaire, quand
0, tend vers 0 mais que /n(F(0) — F(—6,)) se « stabilise ». En particulier,
si la fonction de répartition est différentiable au voisinage de 0, avec une
dérivée (positive) f(0), on a

\/E(F(O) - F(_Gn)) = \/Ean(O) + \/ﬁO(Qn).

La suite d’alternatives intéressante a considérer est donc 6, = h/+\/n pour
un & > 0. On obtient pour ces alternatives :

(/) = 1= @(q1o — 21£(0)) +o(1).

L’allure de cette fonction est donnée dans la figure 5.5.

Dans la suite, on fixe ’hypotheése nulle Hy et on s’intéresse a la puissance
d’une suite de tests pour des alternatives qui convergent vers 1’hypothese
nulle. Pour simplifier les notations, on s’intéresse au cas d'un parametre
réel 6 € R (i.e. k = 1) et (sans perte de généralité) Hy : 6 = 0. On suppose
que le test T}, rejette '’hypothése nulle pour les grandes valeurs de la sta-
tistique /1, (X) et que cette statistique est asymptotiquement normale pour
les alternatives 6, = h/+\/n
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0.05

h

F1Gure 5.1 — Allure de la fonction puissance pour les alternatives de la
forme 0, = h/+/n en fonction de h avec & = 0.05.

Attention : la convergence doit avoir lieu sous la loi [Py, qui est indexée par
n. Cette convergence ne découle donc pas simplement de la convergence

(7 (X) — p(6)) £(Py)
Vi =0 ~4YN(0,1), V8eO.

D’un autre c6té, la convergence ci-dessus a lieu pour tous les 8 € © tandis
que (5.9) porte seulement sur un voisinage de § = 0. On parle de normalité
asymptotique localement uniforme.

Théoréme 16. Soient yu : ©® — Ret 0 : © — (0;+00) des fonctions telles
que (5.9) soit vérifiée pour toute suite 0, = h/\/n. Supposons que u (resp. ) est
dérivable (resp. continue) en 0 = 0. Alors la suite de tests T;, qui rejette Hy : 6 = 0
contre Hy : 0 > 0 lorsque h,(X) € R, avec

Ry = {v/n(ha(X) — #(0)) > (0)g1-4},

(00t g1_, est le quantile d’ordre 1 — w de la loi N'(0,1)) est asymptotiquement de
niveau «. De plus, la puissance de cette suite vérifie

() 1= 0(ae )

pour tout h.
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Démonstration. L'hypothese (5.9) implique en particulier que /1 %
converge en loi sous ’hypothese nulle (6 = 0) vers A/ (0,1). Donc la suite
de tests est asymptotiquement de niveau «.

Considérons a présent des alternatives qui convergent vers Hy de la forme
0, = h/+/n. La puissance vérifie

7 (0) = Eg, T = Py, (v/n(hn(X) = u(0)) > 7(0)q1-a)
(hn(X) = 1(6n)) _ 0(0)q1-a + V1 (p(0) — p(62))
=y, (Vi > Tk )
_ 7(0)91-a + V1 (u(0) — p(64))
=1-o(==0 o) ) +o(1),

d’apres (5.9). Puisque o est continue en 0, que y est dérivable en ce méme
point et 6, = h/+/n, on obtient

(1(0) —u(6n))  #(0)
= (% R O
et la continuité de ® acheve la preuve. OJ

Sous I'hypothése de normalité asymptotique localement uniforme, la puis-
sance de la suite de tests dépend uniquement de la pente %. Deux suites
de tests (de méme niveau asymptotique a) peuvent donc étre comparées
via leur pente : pour le test de Hy : & = 0 contre 6 > 0, celui qui a la plus

grande pente aura la plus grande puissance et sera donc le meilleur.

Définition 20 (Efficacité relative asymptotique). Soient deux suites de test
(TH)>1 et (T?),>1 de méme niveau asymptotique a pour le test de Hy : 6 = 0 et
satisfaisant (5.9) (pour (p1,01) et (pa, 02), respectivement. Alors, le rapport

_ (Hi(o)/01(0)>2
#2(0)/02(0)
est 'efficacité relative asymptotique de Ty par rapport a T,.
Exemple. [Test de signe versus t-test]. Soit X = (Xj,...,X,) iid. de den-
sité f(- —6) ot f est une fonction paire et le moment d’ordre 2 noté

0% = [x?f(x)dx < 4o0. Remarquez que la fonction de répartition corres-
pondante F(- — 0) vérifie F(0) = 1/2; on est donc dans un cas particulier
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du contexte de I'exemple précédent sur le test de signe. On veut toujours
réaliser le test de Hy : 6 = 0, qui correspond a I'hypothese que les observa-
tions ont une distribution symétrique par rapport a 0.

Le test de Student (t-test)* de niveau asymptotique « utilise la statistique
de test h,(X) = /nX, /S, et rejette I'hypothese nulle pour les grandes
valeurs de h,(X) (en valeur absolue si on fait un test bilatére; et pour les
valeurs trop petites ou trop grandes en cas de test unilatere). (Attention
sans hypothese gaussienne sur les X;, la statistique de Student ne suit pas
une loi de Student!) Commencons par vérifier I'hypothese (5.9) pour cette
suite. On considere des alternatives 6, = li/+/n et on remarque

R R

Sn

Remarquons que sous PPy , la loi de X, — h/+/n ne dépend plus de 6, ; c’est
la méme que celle de X, sous 6 = 0. De la méme fagon, la loi sous Py,
de la variance empirique S3 = n~ (¥} ; X? — X2) ne dépend pas de 0, et
a la méme loi que sous 8 = 0. On en déduit que comme S, converge en
probabilité vers ¢ (sous toutes les lois Py, y compris [Py ), en combinant le
lemme de Slutsky avec la loi des grands nombres pour la variable /n(X, —
h/+/n) /o qui converge sous Py vers une N (0,1), on obtient que le premier
terme converge en loi sous Py, vers une N'(0, 1) et le second terme converge
vers 0. Donc (5.9) est vérifiée avec u(6) = 6/ et 0(0) = 1. La pente de cette
suite de tests vaut 1/0 = ( [ x2f(x)dx)~1/2.

La pente de la suite de tests de signe vaut (reprendre les calculs précédents)
2f(0). On en déduit que l'efficacité relative asymptotique de la suite de
tests de signe par rapport a la suite de t-tests vaut

4P2(0)( [ f(x)dx).

Ce rapport dépend de la densité f. Par exemple pour f une densité uni-
forme (sur un intervalle symétrique autour de 0) on trouve 1/3 qui est
inférieur a 1 (donc le t-test est meilleur en ce sens) alors que pour la den-
sité de Laplace, on trouve 2 (et le test de signe est meilleur).

4. Voir le Chapitre 6.
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Chapitre 6

Echantillons gaussiens et
modele linéaire

6.1 Notations

> X2 :loi du chi-deux a n € IN* degrés de liberté. Densité par rapport a
la mesure de Lebesgue sur R :

1

(n—2)/2,-x/2
2”/2F(n/2)x e IR, (x), xeR.

Note : X% est la loi de U% 4.4 ll,%, ou Uy, ..., U, sont des variables
aléatoires indépendantes de méme loi N (0,1).

> T, : loi de Student a n € IN* degrés de liberté. Densité par rapport a
la mesure de Lebesgue sur R :

I((n+1)/2) 2\ —(n+1)/2
A (n/2) (1+3)

, x €.

Note : T, est la loi de \/nU/ V'V, ot U et V sont des variables aléa-
toires indépendantes de lois respectives A/(0,1) et x2.

> F(ny,n2) : loi de Fisher de parameétres (11, 13) € (IN*)2. Densité par
rapport a la mesure de Lebesgue sur IR :

1 (nyx)™/ 22/ I (x)
B(n1/2,12/2) x(nyx + np)(mtm)/2 K2

x € R,
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avec B la fonction béta définie pour tout (t1,t2) € (R% )2 par la
relation B(ty,tp) = fol uh=1(1 — u)2~1du.

Note : F(ny,np) est la loi de (U/ny)/(V/ny), ou U et V sont des
variables aléatoires indépendantes de lois respectives x5, et x3,.

6.2 Rappels sur les vecteurs gaussiens

Cas réel. Une variable aléatoire réelle X est dite gaussienne (ou de loi
normale) de parametres m € R et 0> € R, (¢ > 0) si sa fonction caracté-
ristique s’écrit

212

Eexp(iuX) = exp (ium — T”), Vu € R.

La loi de X est notée N (m,0?), et 'on a EX = m et VX = o2. Lorsque
o = 0, on dit que X est dégénérée; dans le cas contraire, elle admet la
densité par rapport a la mesure de Lebesgue

)2
\/%exp <—%) , VxelR
o

Cas vectoriel. Plus généralement, une variable aléatoire X a valeurs dans
R? est un vecteur gaussien de RY s’il existe M € R? et ¥ une matrice
d x d réelle, symétrique et positive, tels que la fonction caractéristique de
X s’écrive

1
Eexp(iuTX) = exp (iuTM — EuTZu>, Yu € R%,
(Les vecteurs sont considérés comme des matrices colonnes.) La loi de X

est notée N;(M, X). Alors M est la moyenne de X, i.e. EX = M, et Z est la
matrice de variance-covariance de X, i.e.

Y=E(X-EX)(X-EX)T.
Lorsque la matrice X est inversible (i.e., définie positive), X admet la densité
par rapport a la mesure de Lebesgue

1
(27)4/2, /det ()

exp ( — %(x ~M)TZ Hx - M)), Vx € R
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Lorsque X n’est pas inversible, on montre facilement que la loi de X est
IP-p.s. concentrée sur le sous-espace affine de R? d’origine M et engendré
par les vecteurs propres correspondant aux valeurs propres non nulles de
z.

Un moyen simple de montrer qu’un vecteur aléatoire est gaussien est duti-
liser la définition équivalente suivante :

Proposition 7. Un vecteur aléatoire est gaussien si et seulement si toute combi-
naison linéaire de ses composantes est une variable aléatoire réelle gaussienne.

Démonstration. Soit X € R? gaussien, A € R? et Y = ATX une combi-
naison linéaire de ses composantes. Alors Eexp(itY) = Eexp(itATX) =
Eexp(i(tA)TX) = exp(i(tA)TM — (1/2)(tA)TL(tA)) = exp(itATM — (£2/2)ATZA)
ce qui signifie que Y est une variable aléatoire gaussienne avec EY = ATM

et VY = ATZA.

Réciproquement, soit X une variable aléatoire a valeurs dans IR¥ avec le vec-
teur EX = M et la matrice VX = E(X — M)(X — M)T = X. Alors pour tout
u € RY, la variable aléatoire (réelle) uTX a pour moyenne E(uTX) = uTM et
sa variance vaut E(uTX — uTM)?. Comme uTX — uTM est un scalaire alors
ut™X —u™™ = (u™X —uTM)T = XTu — MTu. Donc sa variance E(uTX —
uTM)? = E(u™X —uTM)(XTu — MTu) = uTE(X — M)(X — M)Tu = uTZu.

Supposons que cette variable aléatoire est gaussienne pour tout u. Alors
sa fonction caractéristique prend la forme Eexp(itu™X) = exp(ituTM —
(t?/2)uTZu). Pour t = 1, cela donne E exp(iuTX) = exp(iu™M — (1/2)uTZu).
Comme c’est vrai pour tout u € R, le vecteur X est gaussien. O

Mentionnons pour finir deux résultats d’utilité constante dans la manipu-
lation des vecteurs gaussiens.

Proposition 8.
(i) Transformation affine. Si A est une matrice réelle de taille k x d, et b €
R et X est un vecteur de loi Ny(M, %), alors AX + b suit la loi Ni.(AM +
b, ALAT).
(ii) Caractérisation de l'indépendance. Soit X un vecteur gaussien. Les
composantes de X sont des variables aléatoires réelles indépendantes si et
seulement si la matrice de variance-covariance de X est diagonale.
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Ainsi, lorsque X = (Xj, ..., X;) est un vecteur gaussien, on a I’équivalence :
Vi # j, X; et X; indépendantes < Cov(X;, X;) = 0.

Rappelons que seule I'implication = est vraie dans le cas général.

Démonstration. (i) On a

Eexp(iuT(AX +b)) = exp(iuTh)Eexp(i(ATu)TX)
=exp(iuTb+ (ATu)TM — (1/2)(ATu)TE(ATu))
=exp(iuTb+uTAM — (1/2)(uTA)X(ATu))
=exp(iuT(b+ AM) — (1/2)uTAZATu).

(ii) L'implication est immédiate. Réciproque : si Cov(X;, X;) = 0, la ma-
trice X est diagonale, la fonction caractéristique de X se présente comme
le produit de fonctions caractéristiques de composantes, ce qui est la fonc-
tion caractéristique du vecteur gaussien avec des composantes indépen-
dantes. O

Exemple. Soit Z ~ N'(0,1) et ¢ ~ #(1/2) deux variables aléatoires indé-
pendantes. Alors X; = Z et X; = (2¢ — 1)Z sont des variables aléatoires
réelles gaussiennes (pourquoi?), mais X = (X1, Xp) n’est pas un vecteur
gaussien, puisque X; + Xy = 2¢eZ prend avec probabilité 1/2 la valeur 0.
On notera que Cov(X7, Xp) = 0 (faites le calcul) mais que X; et X, ne sont
pas indépendantes (si elles 1’étaient, comme leurs lois sont gaussiennes, le
vecteur X serait gaussien ... ).

6.3 Théoreme de Cochran

Dans le monde des vecteurs gaussiens, orthogonalité et indépendance se
confondent. Ce lien entre la géométrie et les probabilités a pour consé-
quence le théoreme de Cochran, qui constitue la pierre angulaire de toute
la statistique des échantillons gaussiens.

Théoréme 17 (COCHRAN). Soit ¢ > 0,X ~ N, (0,0%1d,) et V4,..., V), des
sous-espaces vectoriels orthogonaux de dimensions respectives r1, ..., 1 tels que

Vig---@eV,=R"
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Alors les projections orthogonales 71, ...,y de X sur Vy,..., V), sont des vec-
teurs gaussiens indépendants et, pour chaquei =1,...,p,

1
il ~ 23

Démonstration. Soit (e;'.)i,]- une base orthonormée de IR" telle que pour chaque
i=1,...,p (e;)lgjgri est une base orthonormée de V.. Pour tout i =
1,...,p,onam = M;X, ou M; est la matrice symétrique de taille n x n
définie par ' - '

Mi=(ey---e,) () ---e,)".

Noter que puisque les vecteurs (e;-)i,j sont normés et orthogonaux, M; est

idempotente (Ml-2 = M;) et M;M; = 0 pour tout i # j.
Montrons la premieére assertion du théoreme. Puisque X est gaussien, toute
combinaison linéaire de ses composantes est gaussienne. En conséquence,
toute combinaison linéaire de composantes du vecteur (rt1, ..., np) (est en-
core une combinaison linéaire des composantes de X et donc) est aussi une
variable gaussienne. De plus, la covariance entre les vecteurs aléatoires 7;
et 77; est nulle pour tout i # j. En effet, ces vecteurs aléatoires étant centrés,
— T _ T
Cov(m;, mj) = E (7; — Em;) (7r; — Em;) ' = E7t;7]
= EM;X(M;X)T = M;EXXTM,;
=0 ZMZ'M]',
d’ou Cov(;, nj) = 0. Par suite, 71y,..., 7T, sont des vecteurs gaussiens in-
dépendants.

Pour montrer la seconde assertion, fixons i = 1,...,p et remarquons que
comme M; est symétrique et idempotente :

;= M;X ~ Ny (0,02 M;1d, M;) = N,(0,0*M;).

En notant E; la matrice de taille n x r; définie par E; = (¢! - -eii), on a
M; = E;ET et donc
Tt ~ UEiMi(O, Idr,-)-

Or, si Z est un vecteur aléatoire de loi N;,(0,1d,,), || E,Z||* = || Z||* ~ x7. car
ETE; =1d,,, d’ou le théoreme.

]
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6.4 Echantillons gaussiens

Rappelons que pour une suite Xj, ..., X, de variables aléatoires réelles, on
note

_ 1 n ’ 1 n _ ) n
Xo==)Y_Xi, Sp=-Y.(Xi—Xy)” et

Rappelons que S$2 = (1/n) L X? —2X,(1/n) L X; + X2 = 1/ny X? —
Alors ES2 = EX? —EX2 = 0>+ m? — VX, — (EX;)? = 02 + m? —no?/n® —
m? = 152 Ainsi S2 est un estimateur de la variance 0% qui a un biais. On

lui préfere donc S2 qui est sans biais.

Le théoreme ci-dessous met en évidence le role tenu par la loi de Student
et la loi du )(2 lorsque Xj, ..., X, sont indépendantes et de méme loi gaus-
sienne.

Théoreme 18 (FisHER). Soit m € R,0 > Oet X, ..., X,, des variables aléatoires
indépendantes et de méme loi N'(m,c?). Alors :

(i) X, et S? sont indépendantes.
(ii) nS2/0? ~ x2(n — 1) (ou encore (n —1)S% /02 ~ x%(n —1)).
(iii) n(Xy —m) /Sy ~ T(n—1).

Remarque. Dans ce théoreme, (iii) est a rapprocher de la propriété clas-
sique \/n(X, —m) /o ~ N(0,1) satisfaite par la suite de variables aléatoires
indépendantes Xj, ..., X, de méme loi N (m, c?).

Démonstration. Soit V le sous-espace vectoriel de R" engendré par e =
(1,...,1)T etsoit X1 = (XL Xa—m)T  Af(0,1d,,).

ag

Le projecteur orthogonal P sur V est la matrice n x n dont tous les coeffi-
cients valent 1/n. En effet, la matrice C est la matrice colonne qui se com-
pose de coordonnées du vecteur e normalisé : (1/+/n,...,1/y/n). Alors
P = CCT est la matrice de taille n x n avec tous les éléments 1/n.

De ce fait,

Xl_Xn
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Chapitre 6 Echantillons gaussiens et modele linéaire

Comme (Id, — P)— est la projection orthogonale de X=™ sur I'orthogo-
nal de V et £-1 1(0,1d,,), on déduit du theoreme de Cochran
(Théoreme 17) que PX=™ est indépendant de (Id, — P)%=", et donc en
particulier que X, est mdependant de S2 = (¢?/n)|(1d,, — P)X||2 d’ou (i).
De plus, comme V est de dimension 1,

ns?
0'2

= [[(Idy = P)X||* ~ x*(n — 1)

d’apres le théoreme de Cochran, d’ou (ii). Par la définition de 52

(n— 1)§721 _ ”S% 2

o2 - o2 Xn—-1-

Par ailleurs P(¥>1) = X” e est un vecteur gaussien N (0, PI1d,PT) =
N (0, P) (car P étant la matnce d’un projecteur, PPT = PP = P), en parti-
culier la variable aléatoire X” w

est gaussienne centrée rédu1te

™ est gaussienne N (0,1/n). Donc

Enfin, (iii) se déduit des résultats précédents, car \/n (X”f;m) et (n—1)5%/q?
sont indépendantes, et de lois respectives A/(0,1) et x*(n — 1). On a alors

(X, —m) V- Tymfm

2 B (n—1)S3 A%

n o2

de loi de Student a n — 1 degrés de libertés.
O

Le Théoréeme de Fisher (Théoreme 18) a des conséquences importantes
pour le traitement des échantillons gaussiens i.i.d.. Nous détaillons dans
les paragraphes qui suivent quatre exemples, mais bien d’autres exten-
sions sont possibles. A partir de maintenant, on considére un n-échantillon
X = (Xy,...,Xy) iid., de loi commune N (m,0?), avec m € R et ¢ > 0.

Intervalle de confiance pour m. Lorsque o est connu, on utilise 1’estima-
teur X, et le fait que

Xn_m

Vn

~ N(0,1)
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quelque soit la valeur de m. C’est une statistique pivotale, pour obtenir
l'intervalle de confiance

de niveau (1 — a) pour le parametre m (comme d’habitude, 41—y désigne
le quantile d’ordre (1 — %) de la loi (0, 1)).

Lorsque o est inconnu, cet intervalle n’est pas utilisable. On s’en sort grace
au Théoreme 18, qui nous permet d’affirmer que
Xn —m

Vn g ~T(n—1).

C’est une autre statistique pivotale. On en conclut que

> (n—l)i S (n—l)i

est le

est un intervalle de confiance pour m de niveau (1 — «), ol tgn_;l)

quantile d’ordre 1 — § de la loi 7 (n — 1). On notera le remplacement de
q1-g par tgn:%l) ainsi que celui de ¢ par S, : ce mécanisme est parfois appelé

« studentisation » .

Intervalle de confiance pour ¢?. D’apres (ii) du Théoréme 18,
ns2
0—2” ~x(n—1)

C’est la statistique pivotale pour . On en déduit que

ns2  nS?
xgn_ %1) x(%n 1)
est un intervalle de confiance pour ¢? de niveau (1 — &), ot x,&n_l) est le
quantile d’ordre « de la loi x?(n — 1) (noter le sens des dénominateurs dans
I'intervalle).
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Test de Student. Construisons un test de niveau « € (0,1) dans le pro-
bleme de test de

Hop:m >mq contre Hi:m <my,

avec ¢ inconnu et m; un réel fixé. Un protocole naturel de rejet pour ce

probleme est de la forme X, < k,, avec k, un seuil a préciser, car Hy est re-
jetée lorsque la moyenne des observations prend une valeur anormalement

faible.

Si T, est une variable aléatoire de loi 7 (n — 1), on a, Vim > my,

) X, — ko —
lP(Xn<ka):IP<\/E "g ™ "‘g m)
n n

_ lP(Tn < \/ﬁk"‘g_nm»

la derniere égalité découlant du Théoréme 18. Du coup,

sup P(Xy < ky) = lP(Tn < ke iml).

m>my n

11 suffit donc de choisir k, tel que

ky = mq + t&n_l)i

ﬁ,
(n=1)

out, ’ estlequantiled’ordre a delaloi 7 (n—1). Ainsi, le test de région
de rejet

_ 1§,
Rstudent = {(xl,...,xn) eR": %, < m1+t§¢n )\/—%},

appelé test de Student, est de niveau (de taille) a. La procédure de décision
consiste donc a rejeter Hy au niveau « lorsque (X, ..., Xn) € Rstudent- (On

(n=1) g
remarque que t, remplace g, et que S, remplace ¢.
On montre de méme que le test bilatéral

Hy:m=my; contre Hj:m # m
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est associé a la région de rejet

: \/n

En effet, dans ce cas le risque de l'erreur de premiere espece est égal a la
taille du test

1§,
Rstudent = {(x1,- o Xxy) €R" Ry —my| > ti"l)_”} )

ol -1
]Pml (X S RStudent) = ]P(\/E|Xn - m|/sn > tgn_,x/)‘z)

—P( Tl > ) =1-(1—a/2) +1- (1-a/2) =

Test de Fisher. Construisons un test de niveau &« € (0,1) dans le pro-
bléeme de test de

Hyp:0>01 contre Hjp:o <oy,

avec 1 > 0 fixé. Une région de rejet naturelle pour ce probléme de test est
de la forme 62 < k, avec k, un seuil a préciser, car Hy est rejetée lorsque
la variance empirique prend une valeur anormalement faible. Sous Hy (i.e.
o > 01), d’apres le Théoreme 18,

n—1)82  (n—1)k
2 < 2 a)

ot Z ~ x*(n—1). Deés lors,

sup P(S2 < ky) = I[’()gz(n —1) < M)

>0

On choisit k, tel que
(n—1)
= xa 0’2
“T -1 v

ott " est le quantile d’ordre a de la loi x?(n — 1). Le test de Fisher est

le test de région de rejet

(n=1)
X
RFisher:{(xlr---/xn)EIRnI§$1< 1’1“ 0'12}
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Ce test est de taille (et de niveau) «, et la procédure de décision consiste a
rejeter Hy au niveau « lorsque (X3, ..., Xy) € REisher-

Par ailleurs, sa fonction de puissance sur (0, 07) est donnée par

(n—1) 2 2
2 X o _ (=18 n-1)01
]P(S”<—n—101)_]P<—02 < X 02>

= Fya(y-1) (x,&”‘”af/az),

ot Fi2(,_q est la fonction de répartition de la loi de x*(n —1). Sa plus
petite valeur sur (0,07) est a (atteinte pour ¢ = 07) et cette fonction tend
vers 1 quand ¢ — 0. C’est aussi un test sans biais.

6.5 Régression linéaire des moindres carrés

Modéle statistique. De maniere générale, il s’agit de modéliser une ex-
périence dont chaque observation Y; € R,1 < i < n, est influencée par des
mesures (déterministes) connues x7,...,x¥. On s'intéresse par exemple a
l'effet pour un individu i de la concentration dans le sang de k marqueurs
chimiques (les xil,. ey xf.‘) sur une certaine charge virale (Y;). En désignant
par X la matrice de taille n x k définie par X = (x{ )i<i<n,<j<k, le modele
de régression linéaire multiple admet la formulation suivante :

Y = X0+,

avec € ~ Nn(O, O'ZIdn), pour des parametres inconnus 6 € R¥ et ¢ > 0. Les
k vecteurs formant les colonnes de X sont appelés régresseurs. Ce modele
s’écrit, de facon équivalente,

(Rn/ {Na (X6, UZIdn) }GERk,(7>O>

et I'observation associée n’est autre que Y = (Y1,...,Y,)7.On impose donc
en particulier I'hypothese d’homoscédasticité selon laquelle la matrice de
variance-covariance de la loi dont I’observation est issue est proportionnelle
a la matrice identité. Notons également que, pour touti,si 6 = (01,...,6¢)7,
on a
k.
Y, = Z x{@l + &,
j=1
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avec €y, ..., &, des variables aléatoires indépendantes de méme loi N(0, (72).
En réduisant au besoin leur nombre, on peut toujours considérer que les
régresseurs sont linéairement indépendants et que, par conséquent, la ma-
trice X est de rang k. Cela implique en particulier que k < n.

Estimation des paramétres. Dans ce qui suit, E désigne "espace vectoriel
engendré par les colonnes de X et ur désigne la projection orthogonale de
u € R" sur E.

Théoréme 19 (ESTIMATION DES MOINDRES CARRES). Soit § € R tel que Yp =
X0 soit la projection orthogonale de Y sur E. Alors
(a) (? = Argmingpi ||Y — X6
(b) & = (XTX)~IXTY
(c) 8 ~ Ni(0,0*(XTX) ™). C'est en particulier un estimateur sans biais de 6.
d) 0% = % ~ nU_—ZkX%n—k) est un estimateur de 0.

(e) O et 62 sont indépendants.

Démonstration. La matrice X est la matrice d’une application linéaire de R
dans E C R" avec k < n, application qui est injective (car matrice de rang
plein) donc la projection orthogonale Yg de Y sur E s’écrit Yz = X8, ot 6
existe et est unique. On choisit naturellement § comme estimateur de 6 et,
puisque par définition d"une projection orthogonale

0 = argmin ||Y — X8|,
feRk

on 'appelle I'estimateur des moindres carrés.

On peut décrire explicitement § en remarquant que, comme Y — X0 est
dans l'orthogonal de E, pour tout u € RF :

(Xu,Y —X8) = 0.

Par suite, (1, XTY — XTX8) = 0 pour tout u € R¥ et donc XTY = XTX4.
Remarquez que la matrice XTX (de taille k x k) est symétrique et positive
(pour tout u € R, on a uT™X™Xu = (Xu,Xu) > 0). Comme par ailleurs
rang(X) = k, la matrice XTX est définie positive (si < Xu, Xu >= 0, alors
Xu = 0 donc u = 0). Ainsi XTX est une matrice inversible et son inverse est
aussi symétrique. On obtient

0= (XTX)"IXTY.
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En conséquence, 6 est un vecteur gaussien et c’est un estimateur sans biais
de 6 car, si [Eg , désigne 'espérance sous la loi de Y alors

g0 = (XTX) " !XTEg,Y = (XTX) " 1XTX60 = 6.
Par ailleurs,

Vo0 = (XTX) " IXTo?Id, [(XTX) IXT]T
= 2(XTX)IXTX(XTX) ! = o2(XTX) 7},

ce qui montre le point (c).

Construisons maintenant un estimateur de ¢2. Comme Y est la projection
deY=X0+¢esurEetX0 e EonaYr=X0+¢cgetY —Yg=¢—¢, dol
|Y — Yg||? ~ 0?x%(n — k) d’apres le théoréme de Cochran (Théoréme 17).
La moyenne de la loi x?(n — k) valant n — k, I'estimateur

IV =Yel? Y —xd2

n—k n—k

de 02 est donc sans biais.
Par ailleurs, toujours d’apres le théoreme de Cochran, on a d"une part que

(n —k)o?

o2 ~ Xz(n - k)

et, d’autre part, que @ et 62 sont des vecteurs aléatoires indépendants
(puisque Yg et Yp. =Y — YE le sont). O

Partant du théoréme précédent, il est alors possible de construire des inter-
valles de confiance et des tests portant sur 6 ou ses composantes. Nous en
donnons quelques exemples ci-dessous.

Test de Wald. Le test de Wald est un test d’hypotheses sur le parametre
# du modele linéaire. On I’écrit de la facon générale suivante : On se donne
une matrice C de taille g x k, de rang q < k (pour éviter les redondances)
et un vecteur a € R7. L'objectif est de tester

Hy:CO0=a contre H;:CO #a.
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Par exemple si C est I'identité, on teste si la valeur de 6 vaut un vecteur
a fixé. Lorsque q = 1, on teste en fait une combinaison affine des compo-
santes de 6, comme par exemple la nullité de I'un des 6; (dans ce cas C est
une matrice de taille 1 x k et a est un nombre réel).

Le test utilise la statistique de Wald

(CO—a)T(C(XTX)~1CT) " (Ch—a)/q

wir) = 1Y~ X8/ (n— &)

(6.1)

Théoréme 20. Pour tout parametre § € R¥, la statistique de Wald définie par (6.1)
suit, sous Hy, la loi de Fisher F(q,n — k). Par ailleurs, si ¢ = 1 alors

Ch—a o vn—k
C(XTX)-ICT ~ ||y — X4|

suit, sous Hy, la loi de Student a n — k degrés de libertés.

Démonstration. 1) On commence par prouver qu’il existe une matrice A de
taille g X g symétrique et définie positive telle que

C(XTX)"ICT = A2,
Rappelons que (XTX) ! est symétrique définie positive, d’ot1 il vient que
C(XTX)~ICT est également symétrique. Par ailleurs comme C est de rang g,

la matrice C(XTX)1CT est également définie positive, ce qui assure 1'exis-
tence (et méme 1'unicité) de A (racine carrée). D’apres le théoreme 19,

CO —a ~ Ny (CO —a,c*C(XTX) 1CT) = N;(0,0°A2).
Alors A"1(CO—a) ~ N(0,0%1d) et [|[A~1(CO—a)||? ~ o2x%(q). Par ailleurs,

|A71(CE — a)||*> = (Cb — a)T(A*)~1(CO —a)
= (CH—a)TC(XTX)"ICT(CH — a).

Finalement

(CH—a)T(C(XTX)~'CT) "1 (CO—a) ~ %) (q).
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Toujours par le théoreme 19, ||Y — X8| sont § indépendants, et ||Y — X8||?
est de loi e?x?(n — k). Il reste a écrire

(cé—aﬁ@xxwo4cw‘%cé—a)Xn_k
1Y — X8| q

qui est de loi F(g,n — k).

Lorsque g = 1: C(XTX)~!CT est de taille 1 x 1, c’est un réél. Donc CH —a ~
N71(0,0>C(XTX)~ICT) d’ou LT est de loi N7(0,1). Par ailleurs
g

C(XTX)-1C
Y — X8||?/0? est indépendante de 6, et donc de la variable précédente, et
suit la loi x2(n — k). O
Ainsi, si f1 de31gne le quantile d’ordre (1 — «) de la loi .#(gq,n — k),

on a, sousHo,
k)
Puy (W(Y) > A779) =

La région de rejet

Rwai = {y € R": W(y) > {777}

nous donne donc un test (dit de Wald) de niveau (de taille) « pour le pro-
bleme de test de Hy : C = a contre H; : C # a. La procédure de décision
consiste a rejeter Hy au niveau « si ’observation Y tombe dans Ryygg.

Pour g = 1, ce test reste valable. On peut cependant également utiliser le
test dit de Student, de région de rejet
(n—k)
>t . ’
1-4 }

est le quantile d’ordre 1 — 5 de laloi 7 (n — k).

Chb—a
C(XTX)~1ICT

RStudent = {y eR": =
o

(n—k)

out
1- 2

En suivant ces mémes principes, on montre facilement que

{a — (CH— a)T(C(XTXA)—lcT)_l(Cé —a)/q _ (q,n—k)}
1Y —X8]|2/ (n — k) B

fournit un ellipsoide de confiance de niveau (1 — &) pour le parameétre C6.
Lorsque C = Id, nous avons obtenu un ellipsoide de confiance pour le
vecteur 6 a valeurs dans R et si k = 1 un intervalle de confiance pour 6.
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Par ailleurs pour g = 1 on obtient l'intervalle de confiance pour la combi-
naison affine C suivant de niveau 1 — a :

-3

[Cé + " Hg C(XTX)—lcT]

ott pour rappel & = ||Y — X8||/v/n — k.

Test de Fisher de l'utilité des régresseurs. Dans le cadre d’'une modé-
lisation trop compléte, tous les régresseurs n’ont pas la méme influence et
certains n’ont qu'une contribution mineure. Nous allons construire un test
dans le but de supprimer ces régresseurs a l'influence réduite.

Fixons ¢ = 0,...,k — 1. S’interroger sur 1'utilité des (k — g) derniers régres-
seurs mene au probleme de test suivant :

Hy:Vi=qg+1,...,k, ;=0 contre Hy:Jdi=g+1,...,k0; #0.

Noter que c’est un cas particulier du test de Wald avec la matrice C de
taille (k — q) x k dont les g premiéres colonnes sont nulles et les suivantes
forment Id_, (cette matrice est de rang q' = k — ). Mais nous allons pré-
senter différemment ce cas particulier (pour le méme résultat au final).

Notons Ry, ..., R les k vecteurs (régresseurs) formant les colonnes de X,
de sorte que X = (Rj...Ry). Sous Hp, la matrice des régresseurs utiles
X = (R;...R;) est la restriction de X a ses g premiers régresseurs. L'effet
moyen X6 se trouve alors dans I'espace vectoriel V engendré par Ry, ..., Ry,
dont la dimension est g (car Ry, ..., R, sont linéairement indépendants par
hypotheése). Avec ces notations, le probleme de test se réécrit de la maniere
suivante :
Hy:X60 €V contre Hy:X0 € E\V.

(On rappelle que E est 'espace vectoriel engendré par les colonnes de X).
Le principe de construction du test est de rejeter Hy lorsque les projec-
tions orthogonales de l'observation Y sur E et sur V sont significative-
ment différentes. Selon ce principe, une région de rejet naturelle est de la
forme {y € R" : |lyg — yv|| > s} avec s un seuil a préciser. Mais la loi de
|YE — Yy|| dépend du parametre inconnu o. En effet, sous Hy, Yy = X0 + ¢y
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car X6 € V et donc, d’apres le théoreme de Cochran appliqué au vecteur
gaussien g,

IYe =Yy > = |leg —ev* ~ o*x*(k — q).
Or, le théoréeme de Cochran montre aussi que sous H, le vecteur aléatoire
e — ey = Yg — Yy est indépendant de e — eg = Y — Yg. Enfin, ||Y — Y¢[|? ~
02x?(n — k). En réunissant ces observations et en notant pour y € R" :

lve —yvl|?/(k—q)
F - ’
W) =y =yl =)

on trouve F(Y) ~ % (k —q,n — k) sous Hy. Si fli;q’n_k) désigne le quantile
d’ordre (1 — «) de la loi .% (k — g,n — k) alors, sous Hy,

P(F(Y) > 577 =

La région de rejet

RFisher:{yG]Rn' ( )>f1k e k}

nous donne donc un test (dit de Fisher) de niveau (de taille) a pour le
probleme de test de Hy contre H; : on rejette Hy au niveau a si I'observa-
tion Y = (Y3,...,Y,)T tombe dans Rgigher- Notons que F(y) se calcule tres
facilement comme on 1’a vu dans la preuve du théoreme 19 :

ye = X(XTX)"IXTy et yy=V(VTV) lVTy,

ou V est la matrice des q premiéres colonnes de X.

Régression linéaire simple et prévision. Lorsque

et 0 = (1, )7, le modele s’écrit Y; = p+ Bx;+¢; pour 1 < i < n, avec
€1,...,&y 1i.d., de loi commune N(0,1). On parle alors de régression li-
néaire simple.
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On calcule
XTX — ! P XTX = — _ 1
<2xi lez) ( ) Z(xi_fn)z —Xn 1
LY
TY =
XY << Y, x >) ’
(avec la notation X, = 1Y  x;) et on obtient (puisque § = (1, )T =

(XTX)~1XTY) tout d’abord que

— X, Y Y+ <Y, x> _ Z?:l(xi — .’fn)(Yi — Yn)
Z(xi - fn)z ?:1(9‘71' - fn)z

B—

Par ailleurs,

(1/m)(C2)(DY5) = % < Y, x >

h= Y (X — )2
_ (W/m)(EY) (2 —n(®a)?) | (DY) (%) — By < YV, x >
- Y (xi — %n)? " Y (% — %y)?
o L EY)(Ee)-<Y, x>
=Y, + %, Z(xi — J?n)z
=Y, — Bz

On obtient également

) ~ " 02 % ?: xiz —Xp
’ A&<<ﬁ>’ ﬁﬂxy—zgz( _ji 1 ))- (6.2)

Enfin, la variance est estimée sans biais par

1

A2
- =
n—2

Y Y- pri)?,

i=1

quantité indépendante de @ et telle que (”;—?‘72 ~ x*(n—2).

Lorsque l'on dispose d'une nouvelle observation x* de la variable expli-
cative et que 'on souhaite prédire l'espérance m,~ = u + Bx*, I'estimateur
obtenu par plug-in est 1= = fi + Bx*. Comme (f1, ) est un vecteur gaussien
de parametres donnés par (6.2), la variable aléatoire

e — tigs = i — g+ x*(B — B)
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est aussi gaussienne de moyenne zero et de variance (le calcul demande
quelques lignes)

V(= p)+ (x*)?V(B — ) +2x*Cov(ft — p, p— P)

o2

= S D 2 )

Par ailleurs ¢ = L5 Y7 | (y; — fi — Bx;)? est de loi 0?x?(n — 2) et indépen-
dante de (#2, B). En utilisant les résultats ci-dessus, on conclut que

Q) :

On peut également observer que la projection de ¢ sur cette nouvelle ob-
servation x* vérifie e, ~ N'(0,0?) et est indépendante de Y. Il en découle

mx* — (mx* —|— EX*)
&\/ 143+ Bl

~T(n—2).

i=1(xi_fn)2

On peut donc donner un intervalle de prévision dans lequel la nouvelle
observation Yy+ = my+ 4 €~ appartiendra avec probabilité 1 — « :

_ 1 (x* — xp)2
N *:I:t(n 2) A 14 = n
e N T T )2

(Noter l'accroissement de la variance, donc de 1'imprécision.)
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