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Ce cours est constitué de plusieurs parties essentiellement indépendantes :
la première partie contient les Chapitres 1, 2, 3 et porte sur la classifica-
tion supervisée et la régression non paramétrique. Le Chapitre 4 est une
introduction au clustering (ou classification non supervisée). Le Chapitre 5
contient des rappels de statistique paramétrique et étend ces notions par
des considérations de statistique asymptotique (i.e. quand la taille d’échan-
tillon grandit). Enfin le Chapitre 6 porte sur l’estimation (paramétrique) par
moindres carrés.
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Première partie
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Chapitre 1

Introduction à l’apprentissage
supervisé

1.1 Objectifs

On considère un couple (X, Y) de variables aléatoires à valeurs dans Rd ×
Y , avec Y = {0, 1} (classification binaire) ou Y = {1, 2, . . . , M} (classifi-
cation multi-classes) ou encore Y = R ou un sous-ensemble borné de R

(régression). La variable X est appelée variable explicative et la variable Y
est appelée label, classe ou étiquette (dans la cas de la classification) ou
encore réponse ou variable à prédire (dans le cas de la régression). L’ap-
prentissage supervisé, qu’il s’agisse de classification supervisée (binaire ou
multi-classes) ou de régression, consiste à prédire au mieux Y à partir de
X, c’est-à-dire à construire une fonction borélienne g : Rd → Y qui, à un x
donné (réalisation de X) associe une valeur y ∈ Y qui correspond à son la-
bel supposé (cas Y discret) ou à sa réponse (cas continu réél). Pour prendre
un exemple en classification binaire, on peut penser à X comme un vecteur
de variables aléatoires représentant les fréquences d’un certain nombre de
mots-clés dans un email, et à Y comme la variable associée exprimant le
fait que l’email est sain (label 0) ou bien spam (label 1). Dans le contexte
de la régression, X peut-être la dose d’insuline injectée à un patient diabé-
tique et Y le taux de glucose dans le sang de ce patient après 30 minutes.
La fonction g s’appelle un prédicteur ou règle de décision.

Dans la suite, la loi du couple (X, Y) sera notée ν, tandis que la marginale
en X est notée µ (i.e. A ∈ B(Rd), µ(A) = P(X ∈ A)) et r est la fonction de
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Chapitre 1 Introduction à l’apprentissage supervisé

régression de Y sur X, définie par

r(x) = E(Y|X = x) =
∫
Y

ydν(x, y).

C’est donc l’espérance conditionnelle de la variable à prédire, sachant la va-
riable explicative. On peut noter que dans le cas de la classification binaire,
la loi du couple (X, Y) est entièrement caractérisée par le couple (µ, r) et
r(x) = P(Y = 1|X = x) puisque dans ce cas Y prend ses valeurs dans
{0, 1}.

Attention ! Dans ce modèle, Y n’est pas nécessairement lié à X de manière
fonctionnelle, i.e. rien ne dit qu’il existe une fonction φ telle que Y = φ(X).
Pour s’en convaincre, il suffit de penser à l’exemple des emails, au sein
duquel le mot « livraison » peut être associé à un label spam ou non. De
même, le taux du glucose d’un patient n’est pas exactement déterminé par
la dose d’insuline absorbée. La modélisation nous dit seulement que nous
envisageons Y comme une fonction bruitée (aléatoire) de X.

Bien entendu, n’importe quelle fonction borélienne g : Rd → Y fournit
un prédicteur et il est donc nécessaire d’adjoindre un critère de qualité à
chaque décision.

1.2 Fonction de perte et risque

On se donne donc une fonction de perte (ou de coût) ℓ : Y ×Y 7→ R (ou le
plus souvent R+), où ℓ(y, z) mesure l’erreur (la perte) lorsque l’on prédit z
tandis que la vraie valeur est y.

Exemples.
1. Dans le cas de la classification binaire, Y = {0, 1}, une erreur de

classification se produit lorsque z ̸= y. On définit naturellement la
fonction de coût ℓ(y, z) = 1y ̸=z. Cette fonction s’appelle perte 0-1.

2. En classification multi-classes, on peut également utiliser la perte 0-1,
i.e. ℓ(y, z) = 1y ̸=z. De façon parfaitement équivalente, en utilisant la
notation Y = {0, 1}M (plutôt que {1, . . . , M}) on définit le coût de
Hamming ℓ(y, z) = ∑M

j=1 1yj ̸=zj .

3. En régression, Y = R et ℓ(y, z) = (y − z)2 est le coût quadratique
tandis que ℓ(y, z) = |y − z| est le coût absolu.
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Chapitre 1 Introduction à l’apprentissage supervisé

À partir d’une fonction de coût ℓ, on introduit le risque attendu (ou erreur
de généralisation) d’une fonction g : Rd → Y défini par

R(g) = Eℓ(Y, g(X)) =
∫

Rd×Y
ℓ(y, g(x))dν(x, y). (1.1)

Cette quantité dépend de la loi inconnue ν du couple (X, Y).

Exemples
1. En classification binaire, avec la perte 0-1, on obtient R(g) = P(Y ̸=

g(X)). En classification multi-classes avec le coût de Hamming, on a
de même R(g) = P(Y ̸= g(X)).

2. En régression avec le coût quadratique, ℓ(y, z) = (y − z)2, on obtient
R(g) = E(Y − g(X))2 qui est l’erreur quadratique moyenne (MSE
pour mean-squared error en anglais).

Dans la suite, la fonction de perte (et donc le risque attendu) sont fixés.
Pour la classification, il s’agit de la perte 0-1 et pour la régression, de la
perte quadratique.

La quantité R(g), qui mesure la pertinence de la règle g, permet donc de
hiérarchiser les fonctions de décision agissant sur le couple (X, Y). Il est
alors légitime de se poser la question de l’existence éventuelle d’une règle
meilleure que les autres. Ce champion existe et s’appelle le prédicteur de
Bayes. Pour l’introduire, il nous faut la notion de risque conditionnel. Pour
tous (x, z) ∈ Rd ×Y on note

r(z|x) = E
(
ℓ(Y, z)|X = x

)
et on remarque que

R(g) = EE
(
ℓ(Y, g(X))|X

)
=
∫

Rd
r(g(x)|x)dµ(x).

Proposition 1 (Risque et prédicteur de Bayes). Le risque attendu R est
minimum pour un prédicteur de Bayes g⋆ : Rd → Y qui satisfait

g⋆(x) ∈ Argmin
z∈Y

E
(
ℓ(Y, z)|X = x

)
= Argmin

z∈Y
r(z|x), ∀x ∈ Rd. (1.2)

Le risque de Bayes R⋆ est le risque de n’importe quel prédicteur de Bayes et vaut

R⋆ = R(g⋆) = E inf
z∈Y

E
(
ℓ(Y, z)|X = x

)
=
∫

Rd
inf
z∈Y

E
(
ℓ(Y, z)|X = x

)
dµ(x).
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Chapitre 1 Introduction à l’apprentissage supervisé

Démonstration. Pour toute fonction borélienne g : Rd → Y , on a

R(g)−R⋆ = R(g)−R(g⋆) =
∫

Rd

[
r(g(x)|x)− inf

z∈Y
r(z|x)

]
dµ(x),

ce qui prouve le résultat annoncé.

Dans la foulée, on définit l’excès de risque d’un prédicteur g comme la
différence R(g)−R⋆ ≥ 0.

Le prédicteur de Bayes n’est pas nécessairement unique, comme le montre
l’exemple suivant en classification binaire, mais tous les choix possibles
induisent le même risque minimum.

Exemple de la classification binaire. En classification binaire (et pour la
perte 0-1), le prédicteur de Bayes est défini par

g⋆(x) =
{

1 si P(Y = 1|X = x) > P(Y = 0|X = x)
0 sinon.

(Ici, les égalités sont rompues en faveur de 0 par convention, mais l’autre
choix conduirait également à un prédicteur de Bayes.) De façon équiva-
lente,

g⋆(x) =
{

1 si r(x) > 1/2
0 sinon.

On vérifie aisément que quelle que soit la règle de décision g : Rd → {0, 1},
on a

R(g⋆) ≤ R(g).

En effet, puisque P(g(X) ̸= Y) = 1 − P (g(X) = Y) , on a

P(g(X) ̸= Y)− P(g⋆(X) ̸= Y) = P (g⋆(X) = Y)− P (g(X) = Y)
= E (P(g⋆(X) = Y|X)− P(g(X) = Y|X))

≥ 0.

L’inégalité ci-dessus provient du fait que

P(g(X) = Y|X) = P(g(X) = 1, Y = 1|X) + P(g(X) = 0, Y = 0|X)

= 1g(X)=1P(Y = 1|X) + 1g(X)=0P(Y = 0|X)
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Chapitre 1 Introduction à l’apprentissage supervisé

et, de façon similaire,

P(g⋆(X) = Y|X) = 1g⋆(X)=1P(Y = 1|X) + 1g⋆(X)=0P(Y = 0|X)

= max (P(Y = 0|X), P(Y = 1|X)) ,

par définition de g⋆. Il est clair que

1g(X)=1P(Y = 1|X)+ 1g(X)=0P(Y = 0|X)−max (P(Y = 0|X), P(Y = 1|X))

= 1g(X)=1

(
P(Y = 1|X)− max(P(Y = 0|X), P(Y = 1|X))

)
+1g(X)=0

(
P(Y = 0|X)− max(P(Y = 0|X), P(Y = 1|X))

)
≤ 0.

Le résultat est donc démontré.

Par ailleurs, toujours en classification binaire, on note en particulier que

R⋆ = inf
g:Rd→{0,1}

P(g(X) ̸= Y),

où l’infimum est évalué sur toutes les fonctions de décision. Il est également
instructif de remarquer que R⋆ = 0 si et seulement si Y = g⋆(X) P-p.s., i.e.
si et seulement si Y est une fonction borélienne de X. Dans le jargon de la
classification supervisée, les probabilités P(Y = 0|X = x) et P(Y = 1|X =
x) sont dites probabilités a posteriori.

Observons enfin que

R(g) = 1 − P(g(X) = Y)
= 1 − E (P(g(X) = Y|X))

= 1 − E
[
1g(X)=1r(X) + 1g(X)=0 (1 − r(X))

]
.

En conséquence,

R⋆ = 1−E
[
1r(X)>1/2r(X) + 1r(X)≤1/2 (1 − r(X))

]
= 1−E[max(r(X), 1− r(X))].

Ceci montre qu’en classification binaire

R⋆ = E [min (r(X), 1 − r(X))] =
1
2
− 1

2
E|2r(X)− 1|,

et nous fournit donc des écritures alternatives pour R⋆.

L’exemple de la classification binaire s’étend facilement au cas multi-classe,
le prédicteur de Bayes (pour la fonction de perte 0-1) vérifiant dans ce cas

g⋆(x) ∈ Argmax
m∈{1,...,M}

P(Y = m|X = x), ∀x ∈ Rd.
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Chapitre 1 Introduction à l’apprentissage supervisé

Exemple de la régression. Avec la perte quadratique, le prédicteur de
Bayes satisfait

g⋆(x) ∈ Argmin
z∈R

E
[
(Y − z)2|X = x

]
.

Or on a

E
[
(Y − z)2|X = x

]
= E

[
(Y − E(Y|X = x))2|X = x

]
+ (z − E(Y|X = x))2 + 0.

Le premier terme ne dépend plus de z tandis que le second est toujours
positif et vaut 0 pour z = E(Y|X = x). On en déduit que

g⋆(x) = E(Y|X = x),

i.e. le prédicteur de Bayes est donné par l’espérance conditionnelle de la
variable à prédire Y, c’est-à-dire la fonction de régression r elle-même. Par
ailleurs, le risque de Bayes est l’espérance de la variance conditionnelle
R⋆ = E(Y − E(Y|X))2.

Problème. Le prédicteur optimal g⋆ dépend de la loi ν du couple (X, Y).
Puisque cette loi est (en général) inconnue, g⋆ et R⋆ sont inaccessibles et il
faut alors faire appel à un échantillon i.i.d. (X1, Y1), . . . , (Xn, Yn), de même
loi que (X, Y), pour espérer récupérer de l’information sur ces deux quan-
tités.

1.3 L’apprentissage et la minimisation du
risque empirique

On suppose donc à partir de maintenant que l’on a accès à un n-échantillon
i.i.d. (également appelé dans ce contexte base de données ou base d’ap-
prentissage) formé de n couples (X1, Y1), . . . , (Xn, Yn) de variables aléa-
toires indépendantes entre elles, de même loi que (X, Y) et indépendantes
de ce dernier couple. Pour abréger, on note Dn = (X1, Y1), . . ., (Xn, Yn).
C’est à partir de cet échantillon que l’on va s’attacher à construire un pré-
dicteur gn(x) = gn(x; Dn) à valeurs dans Y dont les performances se rap-
prochent de celles de la règle de Bayes g⋆. C’est le mécanisme d’appren-
tissage. Puisque les observations sont en nombre fini (n), il s’agira « d’in-
terpoler », voire « d’extrapoler » ce qui est observé pour construire notre
prédicteur.
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Chapitre 1 Introduction à l’apprentissage supervisé

La qualité d’un prédicteur gn est mesurée par le risque (conditionnel) at-
tendu

R(gn) = E(ℓ(Y, gn(X))|Dn) =
∫

Rd×Y
ℓ(y, gn(x))dµ(x, y).

Il convient de remarquer que, tout comme gn, le risque R(gn) est aléatoire
par l’intermédiaire de Dn. Le conditionnement par Dn permet de distin-
guer l’aléatoire provenant de l’échantillon de celui issu du couple géné-
rique (X, Y). On notera au passage que ER(gn) = E(ℓ(Y, gn(X))).

A partir de là, il est raisonnable de s’interroger sur le comportement du
risque attendu lorsque la taille de l’échantillon tend vers l’infini. On est en
particulier en droit d’attendre d’une « bonne règle » que son risque attendu
se rapproche de R⋆ lorsque n croît. Comme R(gn) est aléatoire (contrai-
rement à R⋆), il convient de bien préciser le sens des convergences. C’est
l’objet de la définition qui suit.

Définition 1. Un prédicteur gn est convergent si ER(gn) → R⋆. Il est fortement
convergent si R(gn) → R⋆, P-p.s.

Comme R(gn) ≥ R⋆, on notera que la propriété ER(gn) → R⋆ est équiva-
lente à R(gn) → R⋆ dans L1(ν). On pourra aussi montrer (exercice), que
la convergence dans L1(ν) équivaut dans ce cas à la convergence en proba-
bilité de R(gn) vers R⋆. On en déduit en particulier que si gn est fortement
convergent, il est aussi convergent.

La minimisation du risque empirique fait partie des grands paradigmes
de l’apprentissage statistique. Le principe général est le suivant. Donnons-
nous un n-échantillon i.i.d. Dn = (X1, Y1), . . . , (Xn, Yn) de même loi que (et
indépendant de) (X, Y) et une famille G de prédicteurs candidats. On se
pose alors le problème de choisir dans G , en utilisant Dn, une règle particu-
lière g⋆n telle que R(g⋆n) = E(ℓ(Y, g⋆n(X))|Dn) soit proche de infg∈G R(g) =
infg∈G E(ℓ(Y, g(X))). (Cette dernière quantité n’est pas R⋆, qui lui est un
infimum sur tous les prédicteurs possibles). En d’autres termes, on cherche
à utiliser au mieux la base de données afin de sélectionner la meilleure
technique de prévision possible au sein d’une collection G de règles fixée
a priori. Il peut par exemple s’agir de prédicteurs linéaires (i.e. de la forme
x 7→ θ⊺x en régression, ou qui décident 0 ou 1 selon que l’on tombe d’un
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Chapitre 1 Introduction à l’apprentissage supervisé

côté ou de l’autre d’un hyperplan en classification binaire), de règles poly-
nomiales (des fonctions polynomiales de la variable explicative en régres-
sion, ou qui décident 0 ou 1 en fonction du signe d’un polynôme pour la
classification binaire), mais bien d’autres exemples sont possibles.

Afin d’atteindre cet objectif, une façon naturelle de procéder consiste à
sélectionner dans G une règle g⋆n qui minimise le risque empirique

R̂n(g) =
1
n

n

∑
i=1

ℓ(Yi, g(Xi))

parmi tous les éléments de G , soit donc

g⋆n ∈ Argmin
g∈G

R̂n(g).

Exemples.

1. En classification binaire, le risque empirique R̂n(g) = n−1 ∑n
i=1 1g(Xi) ̸=Yi

est le nombre d’erreurs moyen sur l’échantillon d’apprentissage Dn.
Un minimiseur g⋆n est une règle qui, parmi la famille de règles consi-
dérée G , commet le moins d’erreurs possibles sur Dn.

2. En régression, le risque empirique R̂n(g) = n−1 ∑n
i=1(Yi − g(Xi))

2 est
l’erreur des moindres carrés empirique. Par exemple pour la classe
G qui est l’ensemble des applications linéaires sur Rd, i.e. g(x) =
gθ(x) = θ⊺x pour θ ∈ Rd, on est ramenés au problème de la régres-
sion linéaire (voir chapitre 6).

En rappelant que R(g⋆n) = E(ℓ(Y, g⋆n(X))|Dn), on espère donc naturelle-
ment que R(g⋆n) ≈ infg∈G R(g). Remarquons d’emblée que

R(g⋆n)−R⋆ =

[
R(g⋆n)− inf

g∈G
R(g)

]
︸ ︷︷ ︸

erreur d’estimation

+

[
inf
g∈G

R(g)−R⋆

]
︸ ︷︷ ︸
erreur d’approximation

.

Cette égalité, simple mais fondamentale, montre que l’erreur commise par
R(g⋆n) en tant qu’estimateur de R⋆ se décompose en deux termes, respec-
tivement appelés erreur d’estimation et erreur d’approximation. L’erreur
d’estimation est aléatoire et reflète l’écart entre la règle sélectionnée et le
champion local dans G . L’erreur d’approximation est déterministe et me-
sure la proximité entre la famille G et la règle optimale de Bayes.
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Il est facile de voir que les deux termes d’erreur varient en sens inverse
avec la taille de la classe G , qui doit donc être suffisamment grande pour
que l’erreur d’approximation soit petite, mais aussi suffisamment petite
pour que l’erreur d’estimation soit contrôlée ! Pour s’en convaincre, il suffit
d’envisager la situation extrême où G est constituée de toutes les fonctions
mesurables de Rd dans Y . Dans ce cas, l’erreur d’approximation est nulle,
mais l’erreur d’estimation peut être importante, comme le montre le choix
de la règle

g⋆n(x) =
{

Yi si x = Xi, 1 ≤ i ≤ n
0 sinon,

dont le risque empirique est nul ! (En effet, cette règle impose g⋆n(x) = 0
pour tout x différent des données X1, . . . , Xn). Ce phénomène indésirable,
qui traduit une accroche trop importante aux données, est appelé sur-
apprentissage (« overfitting » en anglais) et nous donnerons dans la suite
des conditions précises sur G permettant de l’éviter. À partir de mainte-
nant, nous supposons donc la classe G fixée une fois pour toutes et cher-
chons à contrôler le terme d’estimation.

Lemme 1. Un prédicteur g⋆n minimisant le risque empirique sur la classe G vérifie

(i) R(g⋆n)− infg∈G R(g) ≤ 2 supg∈G |R̂n(g)−R(g)|
(ii) |R̂n(g⋆n)−R(g⋆n)| ≤ supg∈G |R̂n(g)−R(g)|.

Démonstration. Le point (i) est une borne de l’erreur d’estimation du pré-
dicteur. En introduisant le risque empirique de ce prédicteur, on écrit

R(g⋆n)− inf
g∈G

R(g) ≤
∣∣R(g⋆n)− R̂n(g⋆n)

∣∣+ ∣∣R̂n(g⋆n)− inf
g∈G

R(g)
∣∣.

Clairement, ∣∣R(g⋆n)− R̂n(g⋆n)
∣∣ ≤ sup

g∈G

∣∣R̂n(g)−R(g)
∣∣,

et par définition de g⋆n,∣∣R̂n(g⋆n)− inf
g∈G

R(g)
∣∣ = ∣∣ inf

g∈G
R̂n(g)− inf

g∈G
R(g)

∣∣ ≤ sup
g∈G

∣∣R̂n(g)−R(g)
∣∣.

(La dernière inégalité provient de la définition de inf et de sup.) Cela
prouve la première assertion. La preuve de la seconde est immédiate.
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Chapitre 1 Introduction à l’apprentissage supervisé

Le Lemme 1 montre qu’en contrôlant la quantité supg∈G |R̂n(g)−R(g)|,
on fait coup double, puisque l’on maîtrise non seulement la sous-optimalité
de g⋆n dans G vis-à-vis du vrai risque R, mais aussi l’erreur |R̂n(g⋆n) −
R(g⋆n)| commise lorsque R̂n(g⋆n) est utilisée pour estimer R(g⋆n), le véri-
table risque du prédicteur sélectionné. Il est donc désormais légitime de
faire porter nos efforts sur l’analyse du terme supg∈G |R̂n(g)−R(g)|. His-
toriquement, dans le problème de classification supervisée, la théorie de
Vapnik-Chervonenkis a eu une influence considérable et nous allons la
présenter dans le chapitre suivant. Pour la motiver, nous commençons sim-
plement, en examinant le cas où la classe de fonctions G a un cardinal
fini.

1.4 Cas de la classification binaire et d’une
classe de cardinal fini

Dorénavant, nous considérons le problème de la classification binaire, avec
Y = {0, 1}, la fonction de perte 0-1 donnée par ℓ(y, z) = 1y ̸=z et le risque
empirique R̂n(g) = n−1 ∑n

i=1 1g(Xi) ̸=Yi
. (Le label est supposé binaire pour

simplifier mais la théorie s’étend sans trop de difficultés au cas multi-
labels).

Commençons par rappeler l’inégalité de Hoeffding.

Théorème 1 (Inégalité de Hoeffding). Soit Z1, . . . , Zn des variables aléa-
toires réelles indépendantes telles que ai ≤ Zi ≤ bi, P-p.s. (ai < bi). Alors, pour
tout ε > 0,

P

(∣∣∣∣∣ n

∑
i=1

(Zi − EZi)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2ε2

∑n
i=1(bi − ai)2

)
.

En particulier, si Z désigne une variable aléatoire de loi binomiale B(n, p),
alors, pour tout ε > 0,

P

(∣∣∣∣Zn − p
∣∣∣∣ ≥ ε

)
= P (|Z − np| > nε)) ≤ 2 exp

(
− 2n2ε2/

n

∑
i=1

1
)
= 2e−2nε2

.
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Chapitre 1 Introduction à l’apprentissage supervisé

En remarquant que pour un prédicteur fixé g (non aléatoire), la quantité

nR̂n(g) =
n

∑
i=1

ℓ(Yi, g(Xi)) =
n

∑
i=1

1g(Xi) ̸=Yi

suit une loi B(n,R(g)), on en conclut que

P
(∣∣R̂n(g)−R(g)

∣∣ ≥ ε
)
≤ 2e−2nε2

,

ce qui conduit au premier résultat fondamental suivant :

Théorème 2. Supposons que la classe G soit de cardinal fini majoré par N. Alors,
pour tout ε > 0,

P
(

sup
g∈G

∣∣R̂n(g)−R(g)
∣∣ ≥ ε

)
≤ 2Ne−2nε2

. (1.3)

Il faut noter que cette inégalité est déjà remarquable car la majoration de la
probabilité est universelle, au sens où elle ne dépend pas de la loi du couple
(X, Y). On en déduit en particulier, en utilisant le lemme de Borel-Cantelli,
que

sup
g∈G

∣∣R̂n(g)−R(g)
∣∣→ 0, P-p.s.

et donc, d’après le Lemme 1, que

R(g⋆n)− inf
g∈G

R(g) → 0, P-p.s.

Ce résultat signifie que pourvu que la classe G soit de cardinal fini, l’er-
reur d’estimation pour la classification tend p.s. vers 0 lorsque n tend vers
l’infini ; en d’autres termes, l’apprentissage est asymptotiquement optimal.
Tout ceci s’étend sans difficulté au contrôle de l’espérance E(supg∈G |R̂n(g)−
R(g)|), via le lemme technique suivant.

Lemme 2. Soit Z une variable aléatoire à valeurs dans R+. Supposons qu’il existe
une constante C ≥ 1 telle que, pour tout ε > 0,

P(Z ≥ ε) ≤ Ce−2nε2
.

Alors

EZ ≤
√

log(Ce)
2n

.
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Démonstration. En partant de l’identité

EZ2 =
∫ +∞

0
P(Z2 > ε)dε,

on a, pour tout u ≥ 0,

EZ2 =
∫ u

0
P(Z2 > ε)dε +

∫ +∞

u
P(Z2 > ε)dε

=
∫ u

0
P(Z2 > ε)dε +

∫ +∞

u
P(Z >

√
ε)dε

≤ u + C
∫ +∞

u
e−2nεdε

= u +
C
2n

e−2nu.

Avec le choix u⋆ =
log C

2n (qui minimise la borne de droite), on en déduit

que EZ2 ≤ log C
2n + 1

2n =
log(Ce)

2n , d’où le résultat par l’inégalité de Cauchy-
Schwarz.

Le lemme précédent, couplé à l’inégalité (1.3), montre que

E
(

sup
g∈G

∣∣R̂n(g)−R(g)
∣∣ ) ≤

√
log(2eN)

2n
.

Le Lemme 1 nous permet alors de conclure que

ER(g⋆n)− inf
g∈G

R(g) ≤ 2

√
log(2eN)

2n
,

ce qui montre que, pour une classe G de cardinal fini, l’espérance de l’er-
reur d’estimation reste sous contrôle (avec une borne plus ou moins grande
selon sa taille N) et tend vers 0 à la vitesse 1/

√
n lorsque n tend vers l’infini.

Néanmoins, lorsque G n’est pas de cardinal fini (comme c’est le cas dans
la plupart des problèmes intéressants), l’approche que nous venons de pré-
senter ne fonctionne plus et il faut trouver de nouveaux outils pour appré-
hender la « taille » de G . C’est l’objet du chapitre suivant, qui présente la
théorie de Vapnik-Chervonenkis.
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Chapitre 2

Théorie de Vapnik-Chervonenkis
pour la classification
Dans tout ce chapitre, on considère le problème de la classification super-
visée : le couple (X, Y) est à valeurs dans Rd × Y où Y est fini. Par souci
de simplification, on choisit de présenter uniquement le cas Y = {0, 1}. La
fonction de perte est le coût 0-1.

2.1 Passage du supg∈G au supA∈A

Etant donné un n-échantillon i.i.d. Dn = (X1, Y1), . . . , (Xn, Yn) de même loi
que (et indépendant de) (X, Y) ∈ Rd × Y et une famille G de règles de
décision candidates, le chapitre précédent a montré le rôle essentiel joué
par le terme supg∈G |R̂n(g)−R(g)|, qu’il faut donc apprendre à contrôler
avec la plus grande généralité possible.

On rappelle que ν désigne la loi du couple (X, Y) et on note νn la mesure
empirique associée à Dn, i.e., pour tout A ∈ B(Rd × {0, 1}),

νn(A) =
1
n

n

∑
i=1

1(Xi,Yi)∈A.

À une règle de décision quelconque g ∈ G , nous pouvons associer le boré-
lien

Ag =
{
(x, y) ∈ Rd × {0, 1} : g(x) ̸= y

}
.

En utilisant cette notation, il est alors facile de voir que, d’une part,

R(g) = P(g(X) ̸= Y) = ν(Ag)

18
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et, d’autre part, que

R̂n(g) =
1
n

n

∑
i=1

1g(Xi) ̸=Yi
= νn(Ag).

On constate ainsi que{
sup
g∈G

∣∣R̂n(g)−R(g)
∣∣ } =

{
sup
A∈A

|νn(A)− ν(A)|
}

,

où, par définition, A = {Ag : g ∈ G }. Ce jeu d’écriture nous montre donc
que pour analyser le comportement probabiliste du terme supg∈G |R̂n(g)−
R(g)|, il faut avant tout comprendre comment se comporte la déviation
maximale de la mesure empirique νn par rapport à la vraie mesure ν, sur
une classe d’ensembles mesurables A donnée. On peut d’ores et déjà ob-
server que, pour un ensemble A fixé,

|νn(A)− ν(A)| → 0, P-p.s.

d’après la loi des grands nombres. D’autre part, si le cardinal de A est fini
et majoré par N, un raisonnement similaire à celui du Théorème 2 nous
apprend que, pour tout ε > 0,

P
(

sup
A∈A

|νn(A)− ν(A)| ≥ ε
)
≤ 2Ne−2nε2

, (2.1)

d’où l’on déduit (lemme de Borel-Cantelli) que, pour toute loi ν,

sup
A∈A

|νn(A)− ν(A)| → 0, P-p.s.

En revanche, si la classe A est trop grande, ce comportement n’est plus
assuré. On s’en convaincra facilement en remarquant que si A désigne
l’ensemble de tous les boréliens de Rd × {0, 1}, alors on peut trouver des
lois ν telles que

sup
A∈A

|νn(A)− ν(A)| = 1, P-p.s.

Il suffit de prendre ν = ρ ⊗ (1/2δ0 + 1/2δ1) où ρ est une loi absolument
continue par rapport à la mesure de Lebesgue sur Rd (par exemple la loi
d’un vecteur gaussien à densité). Prenons ensuite pour ω fixé l’ensemble
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A(ω) = (Rd ×{0, 1}) \
{
(X1(ω), Y1(ω)), . . . , (Xn(ω), Yn(ω))

}
. Alors νn(A(ω)) =

0 mais ν(A(ω)) = 1 donc supA∈A |νn(A)− ν(A)| = 1.

La conclusion de tout ceci est qu’il faut parvenir, d’une manière ou d’une
autre, à contrôler la « taille » de la classe d’ensembles A . Pour atteindre cet
objectif, il convient au préalable d’introduire quelques outils combinatoires
nouveaux.

2.2 Théorème de Vapnik-Chervonenkis

Soit A une famille de sous-ensembles de Rp, de cardinal (pas nécessaire-
ment fini) strictement supérieur à 1 (cette hypothèse sera implicite dans
la suite). Etant donné n points z1, . . . , zn de Rp, on définit la quantité
NA (z1, . . . , zn) par

NA (z1, . . . , zn) =
∣∣{{z1, . . . , zn} ∩ A : A ∈ A

}∣∣.
En d’autres termes, NA (z1, . . . , zn) représente le nombre de sous-ensembles
de {z1, . . . , zn} que l’on peut obtenir en intersectant ces n points par les
ensembles de A . Bien entendu, on a toujours NA (z1, . . . , zn) ≤ 2n, et
lorsque NA (z1, . . . , zn) = 2n, on dit que la classe A pulvérise l’ensemble
{z1, . . . , zn}. Afin de ne pas être gêné par le choix arbitraire de z1, . . . , zn,
on pose

SA (n) = max
(z1,...,zn)∈Rpn

NA (z1, . . . , zn)

et on appelle cet indice le coefficient de pulvérisation de n points par la
classe A .

Clairement, SA (n) ≤ 2n. D’autre part, SA (1) = 2 (pourquoi ?) et si l’on a
SA (k) < 2k pour un certain entier k > 1 alors SA (n) < 2n pour tout n ≥ k
(pourquoi ?). Il est donc naturel de s’interroger sur l’existence d’un plus
grand entier n tel que SA (n) = 2n. C’est l’objet de la définition suivante.

Définition 2. Soit A une famille de sous-ensembles de Rp. On appelle dimension
de Vapnik-Chervonenkis de A , notée VA , le plus grand entier n0 ≥ 1 tel que
SA (n0) = 2n0 . Si SA (n) = 2n pour tout n ≥ 1, on pose VA = +∞.

20



Chapitre 2 Théorie de Vapnik-Chervonenkis pour la classification

La dimension de Vapnik-Chervonenkis mesure, en un certain sens, la « taille »
(la « dimension » ) de la famille A et généralise ainsi la notion de cardinal.
Il s’agit d’un concept combinatoire important qui, comme nous le verrons
dans la suite, joue un rôle clé dans la théorie de l’apprentissage statistique.
Examinons auparavant quelques exemples (les preuves sont de difficultés
variées et laissées au lecteur).

Exemples.
1. Supposons |A | < ∞. Dans ce cas, SA (n) ≤ |A |. D’autre part, par

définition de VA , on a SA (VA ) = 2VA , d’où l’on déduit que

VA ≤ log2 |A |.

2. En dimension p = 1, si A = {(−∞, a] : a ∈ R}, alors SA (n) = n + 1.
En effet, si on a n points, x1 < x2 < . . . < xn, on peut obtenir
tous les sous-ensembles de points consécutifs à partir du premier
point : ∅, {x1}, {x1, x2}, {x1, x2, x3, ..}, . . . , {x1, x2, . . . , xn} en intersec-
tant avec A et seulement ceux-ci. Comme SA (1) = 2 et SA (2) = 3 <
4, on obtient VA = 1.

Si A = {[a, b] : (a, b) ∈ R2}, alors SA (n) = n(n+1)
2 + 1. En effet,

en intersectant n points avec des segments, on pourra obtenir n en-
sembles de un seul point ; n − 1 ensembles de 2 points qui doivent
être consécutifs ({x1, x2}, {x2, x3}, . . . , {xn−1, xn}) ; n− 2 ensembles de
3 points qui doivent aussi être consécutifs ({x1, x2, x3}, {x2, x3, x4},
. . . , {xn−2, xn−1, xn}); · · · ; 2 ensembles de n− 1 points ({x1, . . . , xn−1},
{x2, . . . , xn}) et un ensemble de tous les n points. N’oublions pas l’en-
semble vide qu’il est aussi possible d’obtenir en intersectant avec un
segment qui ne contient aucun de ces n points. Il est facile de voir que
nous ne pourrons obtenir aucun ensemble de points avec des « trous »
, c’est-à-dire qui contient par exemple xi et xi+2 mais pas xi+1 pour un
i = 2, 3, . . . , n − 1. On compte donc SA (n) = (1 + 2 + · · ·+ n) + 1 =
n(n + 1)/2 + 1. Comme SA (2) = 4 = 22 mais SA (3) = 7 < 23, on
obtient VA = 2.

3. Soit p = 2. Si

A =
{
(−∞, a1]× (−∞, a2] : (a1, a2) ∈ R2

}
,

alors VA = 2. En effet pour n = 2, il est facile d’obtenir les 4 sous-
ensembles de points de {z1 = (1, 0), z2 = (0, 1)} en prenant (a1, a2) =
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(0, 0), (1, 0), (0, 1) et (1, 1) dans la définition de A. Donc VA ≥ 2.
Lorsque n = 3, soient (x1, y1), (x2, y2), (x3, y3) trois points quelconques
de R2. On peut choisir un sous-ensemble de deux points parmi ceux-
ci tels que le maximum de coordonnées x1, x2, x3 est atteint sur une
de leurs deux abssisses et le maximum de coordonnées y1, y2, y3 est
atteint sur une de leurs deux ordonnées. Alors tout ensemble A qui
contient ce sous-ensemble de 2 points doit contenir aussi le 3ème
point car ses deux coordonnées sont inférieures ou égales à max(x1, x2, x3)
et min(y1, y2, y3) respectivement. Alors SA (3) < 23 et donc VA = 2.

Si A = {rectangles de R2}, alors VA = 4. En effet, lorsque n = 2,
nous pouvons obtenir tous les sous-ensembles de {z1 = (1, 0), z2 =
(0, 1), z3 = (0,−1), z4 = (−1, 0)} par intersections avec des rectangles.
Par contre si on prend 5 points quelconques, on ne peut pas obtenir
tous les sous-ensembles : un rectangle A qui contient 4 points avec les
premières et deuxièmes coordonnées maximales et minimales, doit
contenir obligatoirement le 5eme point qui reste (faire un dessin !).

4. En dimension p quelconque, si

A =
{
(−∞, a1]× · · · × (−∞, ap] : (a1, . . . , ap) ∈ Rp} ,

alors VA = p. Si A = {rectangles de Rp}, alors VA = 2p. La preuve
qui généralise le cas p = 2 est laissée en exercice.

5. En revanche, pour A = {polygones convexes de R2}, on a VA =
+∞. En effet, pour tout n ≥ 1, si on considère n points sur un
cercle, on pourra obtenir n’importe lequel des 2n sous-ensembles de
ces points en intersectant avec des polygones convexes.

6. (Important.) Soit F un espace vectoriel de fonctions de Rp → R, de
dimension finie dim(F ). Alors, si

A =
{
{x ∈ Rp : f (x) ≥ 0} : f ∈ F

}
,

on a VA ≤ dim(F ).

Soit dim(F ) = m. Prenons x1, . . . , xm+1, des points quelconques de
Rp. Considérons l’application linéaire L : F → Rm+1 définie par
L( f ) = ( f (x1), f (x2), . . . , f (xm+1)). Comme dim(F ) = m, alors dim L(F ) ≤
m et donc il existe un vecteur non-nul γ = (γ1, . . . , γm+1) ∈ Rm+1 or-
thogonal à L(F ). Donc pour tout f ∈ F :

γ1 f (x1) + γ2 f (x2) + · · ·+ γm+1 f (xm+1) = 0.
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Comme γ est non nul, quitte à le multiplier par (−1), on peut dire
que {i : γi < 0} ̸= ∅. Alors

∑
i:γi≥0

γi f (xi) = − ∑
i:γi<0

γi f (xi). (2.2)

(La somme à gauche peut être vide de termes, mais la somme à droite
est non-vide de termes). Montrons qu’il est impossible d’obtenir un
sous-ensemble de points {xi : γi ≥ 0}. En effet si pour une certaine
fonction f : f (xi) ≥ 0 pour tout i tel que γi ≥ 0 et f (xi) < 0 pour
tout i tel que γi < 0, alors la partie droite dans (2.2) est supérieure ou
égale à zéro alors que la partie gauche est strictement négative, ce qui
est impossible. Donc SA (m + 1) < 2m+1 et donc VA ≤ m.

7. En particulier, si A désigne la famille des 1/2-espaces linéaires, i.e.
les sous-ensembles de Rp de la forme {x ∈ Rp : a⊺x + b ≥ 0} pour
a ∈ Rp, b ∈ R, il vient VA ≤ p + 1. En effet l’espace F = {x 7→
a⊺x + b : a ∈ Rp, b ∈ R} est de dimension p + 1.

Nous sommes désormais équipés pour énoncer le théorème fondamental
suivant, appelé théorème de Vapnik-Chervonenkis.

Théorème 3 (Vapnik-Chervonenkis). Soit Z1, . . . , Zn des variables aléatoires
indépendantes, de même loi ν sur Rp, et soit νn la mesure empirique correspon-
dante. Alors, pour toute famille borélienne A ⊂ Rp et pour tout ε > 0, on a

P

(
sup
A∈A

|νn(A)− ν(A)| > ε

)
≤ 8SA (n)e−nε2/32.

Avant de prouver ce théorème, il convient de souligner quelques points
essentiels.

1. La borne est universelle, dans le sens où elle ne dépend pas de la loi
particulière ν.

2. Ce résultat généralise l’inégalité (2.1) qui n’était valable que pour une
classe A de cardinal fini. Grosso modo, le cardinal de A est remplacé
par le coefficient de pulvérisation.

3. D’après le lemme de Borel-Cantelli, il s’ensuit que

sup
A∈A

|νn(A)− ν(A)| → 0, P-p.s.
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dès que la série de terme général SA (n)e−nε2/32 est sommable. C’est
par exemple le cas si |A | < ∞ ou si SA (n) est un polynôme en n. En
revanche, il est impossible de conclure si SA (n) = 2n pour tout n (ou,
c’est équivalent, si VA = +∞).

4. La preuve du Théorème 3 n’est pas compliquée et repose sur quelques
arguments clés que l’on rencontre fréquemment en théorie de l’ap-
prentissage. En un mot, le principe consiste à faire sortir le supremum
de la parenthèse pour le placer devant la probabilité. Ce grand saut
est effectué en jouant sur les propriétés combinatoires de la classe A
telles que décrites par SA (n).

Démonstration du Théorème 3. Dans toute la preuve, on suppose ε > 0 fixé
et on choisit n assez grand de sorte que nε2 ≥ 2. Dans le cas contraire, il est
facile de voir que le résultat annoncé est correct car la borne du théorème
est alors plus grande que 1. La preuve s’organise en 4 étapes.

Etape 1 : Symétrisation. En sus du n-échantillon i.i.d. original Z1, . . . , Zn,
on considère un second échantillon i.i.d. Z′

1, . . . , Z′
n de la loi ν, indépendant

du premier. On note νn la mesure empirique relative à Z1, . . . , Zn et ν′n celle
relative à Z′

1, . . . , Z′
n. La première étape consiste à montrer que

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)
≤ 2P

(
sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ > ε

2

)
.

Pour tout ω ∈ Ω tel que supA∈A |νn(A) − ν(A)| > ϵ choisissons un en-
semble A⋆ = A⋆(ω) (dépendant de l’échantillon initial Z1, . . . , Zn) tel que
|νn(A⋆)− ν(A⋆)| > ϵ. Pour tout ω ∈ Ω tel que supA∈A |νn(A)− ν(A)| ≤ ϵ,
posons A⋆ = Rp. Dans ce cas |νn(A⋆)− ν(A⋆)| = |1 − 1| = 0. Autrement
dit,{

ω ∈ Ω : sup
A∈A

|νn(A)− ν(A)| > ϵ
}
=
{

ω ∈ Ω : |νn(A⋆)− ν(A⋆)| > ϵ
}

.
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Par ailleurs,

P
(

sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ > ε

2

)
= E

(
P
(

sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ > ε

2

∣∣∣ Z1, . . . , Zn

))
≥ E

(
P
( ∣∣νn(A⋆)− ν′n(A⋆)

∣∣ > ε

2

∣∣∣ Z1, . . . , Zn

))
= P

( ∣∣νn(A⋆)− ν′n(A⋆)
∣∣ > ε

2

)
.

On en déduit, en utilisant l’inégalité triangulaire et la définition de A⋆, que

P
(

sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ > ε

2

)
≥ P

({
|νn(A⋆)− ν(A⋆)| > ε

}
∩
{ ∣∣ν′n(A⋆)− ν(A⋆)

∣∣ < ε

2

})
= E

(
1|νn(A⋆)−ν(A⋆)|>εP

( ∣∣ν′n(A⋆)− ν(A⋆)
∣∣ < ε/2

∣∣∣ Z1, . . . , Zn

))
.

L’inégalité de Bienaymé-Tchebytchev montre que

P
( ∣∣ν′n(A⋆)− ν(A⋆)

∣∣ < ε

2

∣∣∣ Z1, . . . , Zn

)
≥ 1 −

E
(
(ν′n(A⋆)− ν(A⋆))2

∣∣∣ Z1, . . . , Zn

)
ε2/4

.

En observant que, conditionnellement à Z1, . . . , Zn, la variable nν′n(A⋆) suit
une loi B(n, ν(A⋆)), on en déduit en particulier que

P
( ∣∣ν′n(A⋆)− ν(A⋆)

∣∣ < ε/2
∣∣∣ Z1, . . . , Zn

)
≥ 1 −

V
(
ν′n(A⋆)

∣∣Z1, . . . , Zn
)

ε2/4

= 1 − ν(A⋆)(1 − ν(A⋆))

nε2/4

≥ 1 − 1
nε2 ,
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car supu∈[0,1] u(1 − u) = 1/4. Ainsi, puisque nε2 ≥ 2,

P
(

sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ > ε/2

)
≥ E

(
1|νn(A⋆)−ν(A⋆)|>ε

(
1 − 1

nε2

))
≥ 1

2
P
(
|νn(A⋆)− ν(A⋆)| > ε

)
=

1
2

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)

.

On en conclut bien que

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)
≤ 2 P

(
sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ > ε

2

)
.

Etape 2 : Signes aléatoires. On se donne maintenant n variables aléatoires
σ1, . . . , σn, indépendantes et chacune de loi de Rademacher, i.e. telles que
P(σi = −1) = P(σi = +1) = 1/2. On suppose en outre que les variables
σ1, . . . , σn sont indépendantes de Z1, . . . , Zn, Z′

1, . . . , Z′
n. Il est alors facile de

voir que

n sup
A∈A

∣∣νn(A)− ν′n(A)
∣∣ = sup

A∈A

∣∣∣∣ n

∑
i=1

(
1A(Zi)− 1A(Z′

i)
) ∣∣∣∣

a même loi que

sup
A∈A

∣∣∣ n

∑
i=1

σi
(
1A(Zi)− 1A(Z′

i)
) ∣∣∣.

En effet, si une variable aléatoire U est de loi symétrique et une variable
σ est indépendante de U à valeurs ±1 avec probabilités 1/2, alors σU est
de même loi que U : pour tout B borélien P(σU ∈ B) = 1/2P(U ∈ B) +
1/2P(−U ∈ B) = 1/2P(U ∈ B) + 1/2P(U ∈ B) = P(U ∈ B). Si des
variables aléatoires U1, . . . , Un, σ1, . . . , σn sont indépendantes, les Ui étant
toutes de même loi symétrique, et les σi étant de même loi que σ pour
i = 1, . . . , n, alors σ1U1, . . . , σnUn sont indépendantes et de même loi que
U. Il reste à remarquer que 1A(Zi)− 1A(Z′

i) sont de loi symétrique car Zi
et Z′

i sont indépendantes et de même loi.

Dès lors, en utilisant le résultat de la première étape, nous pouvons écrire
que

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)
≤ 2P

(
sup
A∈A

1
n

∣∣∣ n

∑
i=1

σi
(
1A(Zi)− 1A(Z′

i)
) ∣∣∣ > ε

2

)
,
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et donc (par symétrie de la loi)

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)
≤ 4P

(
sup
A∈A

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

)
.

Etape 3 : Le saut du sup. En poursuivant le calcul précédent, on a

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)

≤ 4E

(
P
(

sup
A∈A

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

))
.

Majorons alors le terme

P
(

sup
A∈A

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
≤ P

(
∃A ∈ A :

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
.

Une fois fixés les points z1, . . . , zn, le vecteur (1A(z1), . . . , 1A(zn)) prend
NA (z1, . . . , zn) valeurs distinctes lorsque A varie dans A , soit donc un
maximum de SA (n) valeurs. Du coup,

P
(

sup
A∈A

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
≤ P

(
∃A ∈ A0 :

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
,

où A0 est un ensemble fini (dépendant de Z1, . . . , Zn) de cardinal au plus
SA (n). Il s’ensuit que

P
(

sup
A∈A

1
n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
≤ ∑

A∈A0

P
( 1

n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
≤ SA (n) sup

A∈A

P
( 1

n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
.
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On notera ici le saut du sup de l’intérieur vers l’extérieur de la probabilité,
accompli grâce à l’introduction du coefficient de pulvérisation. Ainsi,

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)

≤ 4SA (n)E
(

sup
A∈A

P
( 1

n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

))
. (2.3)

Etape 4 : Inégalité de Hoeffding et conclusion. Conditionnellement à
Z1, . . . , Zn, la variable aléatoire ∑n

i=1 σi1A(Zi) est la somme de n variables
aléatoires indépendantes, centrées (c’est là que les signes aléatoires jouent
un rôle primordial !) et comprises entre −1 et 1. Ainsi, d’après l’inégalité
de Hoeffding (Théorème 1)

P
( 1

n

∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > ε

4

∣∣∣Z1, . . . , Zn

)
= P

(∣∣∣ n

∑
i=1

σi1A(Zi)
∣∣∣ > nε

4

∣∣∣Z1, . . . , Zn

)
≤ 2e−2n2ε2/(42(1−(−1))2n) = 2e−nε2/32.

On conclut alors en utilisant (2.3) que

P
(

sup
A∈A

|νn(A)− ν(A)| > ε
)
≤ 8SA (n)e−nε2/32,

ce qui est bien le résultat annoncé.

Application : théorème de Glivenko-Cantelli. Plaçons-nous sur la droite
réelle et considérons un n-échantillon Z1, . . . , Zn de variables aléatoires
i.i.d., de loi commune ν. En prenant A = {(−∞, z] : z ∈ R}, il est facile de
voir que, pour tout A = (−∞, z] ∈ A , on a ν(A) = F(z) et νn(A) = Fn(z),
où F (respectivement Fn) est la fonction de répartition associée à la loi ν

(respectivement, la fonction de répartition empirique associée à Z1, . . . , Zn).
D’autre part, nous avons vu ci-dessus (exemple 2) que SA (n) = n + 1.
Ainsi, en utilisant le théorème de Vapnik-Chervonenkis, on montre que

P
(

sup
z∈R

|Fn(z)− F(z)| > ε
)
= P

(
sup
A∈A

|νn(A)− ν(A)| > ε
)

≤ 8(n + 1)e−nε2/32.
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Le lemme de Borel-Cantelli implique alors que

sup
z∈R

|Fn(z)− F(z)| → 0, P-p.s.,

c’est-à-dire que la fonction de répartition empirique converge presque sû-
rement vers la fonction de répartition, au sens de la convergence uni-
forme des fonctions. Ce résultat remarquable porte le nom de théorème
de Glivenko-Cantelli. Il permet d’approximer la fonction de répartition in-
connue F par la fonction de repartition empirique Fn.

Avant de tirer les conséquences du Théorème 3 pour la théorie de l’ap-
prentissage, il convient de préciser quelques propriétés élémentaires de la
dimension de Vapnik-Chervonenkis.

2.3 Aspects combinatoires

Nous admettrons le résultat combinatoire suivant (la preuve se fait par
récurrence), connu sous le nom de lemme de Sauer :

Théorème 4 (Lemme de Sauer). Soit A une famille d’ensembles admettant une
dimension de Vapnik-Chervonenkis finie VA . Alors, pour tout n ≥ 1,

SA (n) ≤
VA

∑
i=0

(
n
i

)
.

Dans la suite, c’est surtout le corollaire suivant qui nous sera utile :

Corollaire 1. Soit A une famille d’ensembles admettant une dimension de Vapnik-
Chervonenkis finie VA . Alors, pour tout n ≥ 1,

SA (n) ≤ (n + 1)VA .
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Démonstration. On a

(n + 1)VA =
VA

∑
i=0

(
VA

i

)
ni =

VA

∑
i=0

niVA !
i!(VA − i)!

≥
VA

∑
i=0

ni

i!

≥
VA

∑
i=0

(
n
i

)
≥ SA (n),

où la dernière minoration provient du Lemme de Sauer.

On déduit en particulier du corollaire précédent qu’un coefficient de pul-
vérisation tombe forcément dans l’une des deux catégories suivantes :

▷ Ou bien VA = +∞ et dans ce cas SA (n) = 2n pour tout n ≥ 1.
▷ Ou bien VA < ∞ et dans ce cas SA (n) ≤ (n + 1)VA .

On ne peut donc jamais avoir des situations intermédiaires, comme par
exemple SA (n) ∼ 2

√
n.

Enfin, en combinant le théorème de Vapnik-Chervonenkis, le Lemme tech-
nique 2 et le Corollaire 1, on conclut que pour toute famille d’ensembles
mesurables A de Rp admettant une dimension de Vapnik-Chervonenkis
finie VA ,

P
(

sup
A∈A

|νn(A)− ν(A)| > 8ε
)
≤ 8SA (n)e−2nϵ2

et donc (par le Lemme 2)

E
(

sup
A∈A

|νn(A)− ν(A)|
)
≤ 8

√
log (8eSA (n))

2n

≤ 8

√
VA log(n + 1) + 4

2n

= O

(√
VA log n

n

)
.

Il est à noter qu’il est possible de se débarrasser du terme logarithmique
en utilisant des techniques dites de chaînage, dont la présentation dépasse
le cadre de ce cours.
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2.4 Application à la minimisation du risque
empirique

Nous pouvons à présent peaufiner les bornes sur l’erreur d’estimation dans
le problème de classification supervisée. Rappelons, pour mémoire, que
l’on considère un n-échantillon i.i.d. Dn = (X1, Y1), . . . , (Xn, Yn) de même
loi que (et indépendant de) (X, Y) ∈ Rd ×Y et une famille G de règles de
décision candidates. En désignant par g⋆n un minimiseur du risque empi-
rique dans G , nous savons que, d’une part,

R(g⋆n)− inf
g∈G

R(g) ≤ 2 sup
g∈G

∣∣R̂n(g)−R(g)
∣∣

et d’autre part,{
sup
g∈G

∣∣R̂n(g)−R(g)
∣∣ } =

{
sup
A∈A

|νn(A)− ν(A)|
}

,

où, par définition, A = {Ag : g ∈ G }, avec

Ag =
{
(x, y) ∈ Rd × {0, 1} : g(x) ̸= y

}
.

Il est alors clair, de par le théorème de Vapnik-Chervonenkis, que le coeffi-
cient de pulvérisation SA (n) va jouer un rôle fondamental dans le contrôle
du terme supg∈G |R̂n(g) − R(g)|. Néanmoins, la classe A , composée de
sous-ensembles de Rd ×{0, 1}, revêt une structure un peu complexe qui ne
se prête pas bien à l’analyse combinatoire. Fort heureusement, les choses
se simplifient grâce à la proposition suivante.

Proposition 2. Soit A = {Ag : g ∈ G } et ¯A = {{x ∈ Rd : g(x) = 1} : g ∈
G }. Alors, pour tout n ≥1, S ¯A (n) = SA (n). En particulier, V ¯A = VA .

Démonstration. Nous allons montrer que pour tous z1, . . . , zn ∈ Rd et tous
e1, . . . , en ∈ {0, 1} fixés,

|NA ((z1, e1), (z2, e2), . . . , (zn, en))| = |N ¯A (z1, z2, . . . zn)|. (2.4)

Sans perte de généralité, on va supposer pour simplifier les notations que
e1 = 0, e2 = 0, . . . , ek = 0, ek+1 = 1, . . . , en = 1. On note les premières
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coordonnées par Vk = (z1, . . . , zk) et Wn−k = (zk+1, . . . , zn). Soit g ∈ G .
Alors l’intersection de Ag avec {(z1, e1), (z2, e2) . . . (zn, en)} donne un pre-
mier sous-ensemble de points parmi {(z1, e1), (z2, e2), . . . , (zk, ek)} tels que
g(zi) = 1 (notons le sous-ensemble de leurs premières coordonnées par
Qg ⊂ Vk) et un second sous-ensemble de points parmi {(zk+1, ek+1), . . . , (zn, en)}
tels que g(zi) = 0 (notons le sous-ensemble de leurs premières coordonnées
par Rg ⊂ Wn−k). Alors l’intersection de Āg = {x ∈ Rd : g(x) = 1} avec
{z1, . . . , zn} vaut Qg ∪ (Wn−k \ Rg).

Remarquons que |NA ((z1, e1), (z2, e2), . . . , (zn, en))| = |{Qg ∪ Rg : g ∈ G }|
et que |N ¯A (z1, z2, . . . zn)| = |{Qg ∪ (Wn−k \ Qg) : g ∈ G }|. Mais le nombre
d’ensembles différents Qg ∪ Rg associés à toutes les fonctions g ∈ G est le
même que le nombre d’ensembles différents Qg ∪ (Wn−k \ Rg) associés à
toutes les fonctions g ∈ G . Autrement dit |{Qg ∪ Rg : g ∈ G }| = |{Qg ∪
(Wn−k \ Qg) : g ∈ G }|. En effet : Qg1 ∪ Rg1 = Qg2 ∪ Rg2 ssi Qg1 ∪ (Wn−k \
Qg1) = Qg2 ∪ (Wn−k \ Qg2). L’égalité (2.4) est démontrée.

Nous sommes désormais en mesure d’énoncer le principal résultat de ce
chapitre, dont la preuve découle du Lemme 1, du théorème de Vapnik-
Chervonenkis (et du Lemme technique 2 pour la seconde assertion).

Théorème 5. Soit V ¯A < ∞. On a, pour tout n ≥ 1,

P
(∣∣R(g⋆n)− inf

g∈G
R(g)

∣∣ > ε
)
≤ 8S ¯A (n)e−nε2/128.

En outre,

ER(g⋆n)− inf
g∈G

R(g) ≤ 16

√
log (8eS ¯A (n))

2n
.

Démonstration. Par le Lemme 1,

0 ≥ R(g⋆n)− inf
g∈G

R(g) ≤ 2 sup
g∈G

|R̂n(g)−R(g)|

donc par le Théorème 3 et la Proposition 2,

P
(∣∣R(g⋆n)− inf

g∈G
R(g)

∣∣ > ε
)
≤ P

(
sup
g∈G

|R̂n(g)−R(g)
∣∣ > ε

2

)
≤ 8S ¯A (n)e−nε2/(22×32).
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D’après le lemme de Borel-Cantelli, il suit de ce résultat que

R(g⋆n)− inf
g∈G

R(g) → 0, P-p.s.

dès que la série de terme général S ¯A (n)e−nε2/128 est sommable. Or, d’après
le Corollaire 1, c’est précisément le cas dès que V ¯A (ou VA ) est finie puis-
qu’alors S ¯A (n) a une croissance au plus polynomiale en n. On retiendra
donc de tout ceci que la condition V ¯A < ∞ est suffisante pour assurer la
convergence presque sûre du terme d’estimation vers 0. Dans ce cas,

P
(∣∣R(g⋆n)− inf

g∈G
R(g)

∣∣ > 24ε
)
≤ 8S ¯A (n) exp(−2nε2)

d’où par le Lemme 2,

ER(g⋆n)− inf
g∈G

R(g) ≤ 16

√
log(8eS ¯A (n))

2n
≤ 16

√
log(8e) + V ¯A log(n + 1)

2n
,

autrement dit

ER(g⋆n)− inf
g∈G

R(g) = O

(√
V ¯A log n

n

)
.

Exemples.

1. Classification linéaire. En notant x = (x(1), . . . , x(d)), on considère
des règles de classification très simples, de la forme

g(x) =

{
1 si ∑d

j=1 ajx(j) + a0 > 0
0 sinon,

où (a0, a1, . . . , ad) ∈ Rd+1 est un paramètre vectoriel. Chaque fonc-
tion g de ce type subdivise l’espace Rd en deux demi-espaces par la
droite ∑d

j=1 ajx(j) + a0 = 0. Pour la variable X on attribue Y = 1 si X
tombe dans le demi-plan « positif », i.e. ∑d

j=1 ajX(j) + a0 ≥ 0, et Y = 0

si X tombe dans le demi-plan « négatif » i.e. ∑d
j=1 ajX(j) + a0 < 0.

L’ensemble G est bien sur infini mais de dimension finie.
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Dans ce cas,

¯A ⊂
{
{x ∈ Rd : a⊺x + a0 ≥ 0} : a ∈ Rd, a0 ∈ R

}
et, d’après les propriétés de la dimension de Vapnik-Chervonenkis
vues plus haut, on a V ¯A ≤ d + 1 (voir exemple 6 ci-dessus). Ainsi le
Théorème de Vapnik-Chervonenkis s’applique,

P
(∣∣R(g⋆n)− inf

g∈G
R(g)

∣∣ > ε
)
≤ 8(n + 1)d+1e−nε2/128

et
R(g⋆n)− inf

g∈G
R(g) → 0, P-p.s.

En pratique, ce théorème nous recommande de chercher g⋆n qui mini-
mise le risque empirique et nous montre que son erreur d’estimation
est très proche de l’erreur d’estimation optimale sur G .

Pour obtenir g⋆n, on peut visualiser dans l’espace Rd les données
X1, . . . , Xn en les coloriant avec deux couleurs : Xi en rouge si Yi = 1
et Xi en bleu si Yi = 0. On cherche un hyperplan ∑d

j=1 a⋆j x(j) + a⋆0 = 0

qui divise Rd en deux demi-espaces : celui ∑d
j=1 a⋆j x(j) + a⋆0 > 0 conte-

nant le maximum de points rouges, l’autre contenant le maximum
d points bleus. La fonction g⋆n(X) = 1∑d

j=1 a⋆j x(j)+a⋆0>0(X) sera alors la

fonction minimisant le risque empirique.
2. Classification par des boules fermées. La classe G est composée de

toutes les indicatrices des boules fermées de Rd. Ainsi, la fonction de
décision g(x) est l’indicatrice de n’importe quelle boule Bg, i.e. pour
la donnée X on attribue Y = 1 si X est à l’intérieur de Bg et Y = 0
sinon. Dans ce cas,

¯A =

{{
x ∈ Rd :

d

∑
j=1

|x(j) − aj|2 ≤ a0

}
: (a0, a1, . . . , ad) ∈ Rd+1

}
.

En remarquant que

a0 −
d

∑
j=1

|x(j) − aj|2 = a0 −
d

∑
j=1

(
x(j))2

+ 2
d

∑
j=1

x(j)aj −
d

∑
j=1

a2
j ,
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on voit que ¯A est inclus dans une famille d’ensembles de la forme
{{x ∈ Rd : f (x) ≥ 0} : f ∈ F}, où F est un espace vectoriel de di-
mension d + 2. En effet, c’est un espace avec les fonctions 1, x(1), x(2),
. . . , x(d), ∑d

j=1(x(j))2 formant une base. On conclut comme précédem-
ment que

R(g⋆n)− inf
g∈G

R(g) → 0, P-p.s.

En pratique, pour minimiser la probabilité d’erreur, on cherche donc
g⋆n qui minimise le risque empirique parmi toutes les indicatrices de
boules. On visualise à nouveau dans l’espace Rd les données X1, . . . , Xn
en les coloriant avec deux couleurs : Xi en rouge si Yi = 1 et Xi en bleu
si Yi = 0. On essaie de trouver une boule B⋆ de centre (a⋆1 , . . . , a⋆d) et
de rayon

√
a⋆0 qui inclut le maximum de points rouges et laisse à

l’extérieur le maximum de points bleus ; soit l’inverse en échangeant
rouge et bleu. La fonction g⋆n(X) = 1B⋆(X) sera la fonction minimi-
sant le risque empirique.

3. Classification par des convexes. On prend pour ¯A l’ensemble de tous
les polygones convexes de R2, famille pour laquelle nous avons déjà
vu que V ¯A = +∞. Cette classe d’ensembles est trop massive pour
que l’erreur d’estimation puisse être raisonnablement contrôlée par
la théorie de Vapnik-Chervonenkis.

4. Classification linéaire généralisée. On se place dans Rd et on se
donne ψ1, . . . , ψd⋆ un nombre fixe de fonctions mesurables de Rd →
R. Les règles de classification considérées sont alors de la forme

g(x) =

{
1 si ∑d⋆

j=1 ajψj(x) + a0 > 0
0 sinon,

où (a0, a1, . . . , ad⋆) ∈ Rd⋆ est un paramètre vectoriel. Lorsque ψj(x) =
x(j), on retrouve la famille des règles linéaires. Néanmoins, bien d’autres
choix sont possibles. En prenant par exemple pour les ψj les applica-
tions coordonnées et produits de ces coordonnées, on voit que ¯A est
contenu dans une famille d’ensembles du type{

a0 +
d

∑
j=1

ajx(j) +
d

∑
j=1

bj
(
x(j))2

+ ∑
1≤j1<j2≤d

cj1cj2 x(j1)x(j2) ≥ 0
}

.

Dans ce cas, d⋆ = 1 + 2d + d(d−1)
2 et par ailleurs V ¯A ≤ d⋆ + 1, et donc

R(g⋆n)− inf
g∈G

R(g) → 0, P-p.s.
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Chapitre 3

Théorème de Stone et plus
proches voisins
Les chapitres précédents ont mis en lumière le rôle essentiel joué par le
principe de minimisation du risque empirique pour l’apprentissage super-
visé. Dans le cas de la classification, on a également vu le rôle du théorème
de Vapnik-Chervonenkis dans le contrôle de l’erreur d’estimation. Il s’avère
cependant que les familles de règles de décision admettant une dimension
de Vapnik-Chervonenkis finie sont presque toujours trop petites et ne per-
mettent pas d’approcher correctement le risque de Bayes R⋆. On peut par
exemple montrer que pour n’importe quelle famille de règles G dont la
classe de boréliens associée ĀG = {{x : g(x) = 1} : g ∈ G } admet une
dimension de Vapnik-Chervonenkis finie, et pour tout ε ∈ (0, 1/2), il existe
un couple de variables aléatoires (X, Y) tel que

inf
g∈G

R(g)−R⋆ > 1/2 − ε.

Il existe cependant d’autres façons de procéder. Une stratégie concurrente
de la minimisation du risque empirique consiste à utiliser l’échantillon
Dn = (X1, Y1), . . . , (Xn, Yn) pour estimer la fonction de régression r(x) =
E(Y|X = x), et la remplacer par son estimateur rn(x) = rn(x, Dn) dans la
règle de classification.

Dans ce chapitre, nous revenons au cadre général de l’apprentissage su-
pervisé, avec un couple de variables aléatoires (X, Y) dans Rd × Y . Le cas
Y = {0, 1} (ou plus généralement un ensemble fini) correspond au pro-
blème de classification tandis que Y = R correspond à la régression. Nous
nous plaçons toujours dans le cadre où on veut prédire Y à partir de X, en
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utilisant pour cela un n-échantillon de variables (X1, Y1), . . . , (Xn; Yn) i.i.d.
de même loi que (X, Y) (et indépendantes de celles-ci).

3.1 Liens entre classification et régression

Considérons tout d’abord le cas Y = {0, 1} de la classification binaire.
Pour faire le lien avec le chapitre précédent, partons de la caractérisation
du classifieur de Bayes

g⋆(x) =
{

1 si r(x) > 1/2
0 sinon,

(3.1)

où r(x) = P(Y = 1 | X = x) = E(Y | X = x). Nous allons donc utiliser
l’échantillon Dn = (X1, Y1), . . . , (Xn, Yn) pour estimer la fonction de régres-
sion, et la remplacer par son estimateur rn(x, Dn) dans (3.1). La règle de
classification résultante, dite règle plug-in, s’écrit donc naturellement

gn(x) =
{

1 si rn(x) > 1/2
0 sinon.

Le théorème qui suit précise le lien entre gn et rn, en termes d’erreurs

R(gn) = P(gn(X) ̸= Y | Dn), R⋆ = P(g⋆(X) ̸= Y).

On rappelle que µ désigne la loi de la variable aléatoire X.

Théorème 6. Soit rn un estimateur de la fonction de régression et gn la règle de
décision plug-in associée. Alors

0 ≤ R(gn)−R⋆ ≤ 2
∫

Rd
|rn(x)− r(x)| µ(dx).

En particulier, pour tout p ≥ 1,

0 ≤ R(gn)−R⋆ ≤ 2
(∫

Rd
|rn(x)− r(x)|p µ(dx)

)1/p
,

et
0 ≤ ER(gn)−R⋆ ≤ 2

(
E |rn(X)− r(X)|p

)1/p.
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Démonstration. Remarquons que

1gn(X) ̸=Y = 1gn(X)=11Y=0 + 1gn(X)=01Y=1,

d’où il vient

P(gn(X) ̸= Y|X,Dn) = 1gn(X)=1P(Y = 0|X,Dn) + 1gn(X)=0P(Y = 1|X,Dn)

= 1gn(X)=1(1 − r(X)) + 1gn(X)=0r(X)

où, dans la dernière égalité, nous avons utilisé l’indépendance entre le
couple (X, Y) et Dn. De façon similaire, (on rappelle que g⋆ est détermi-
niste)

P(g⋆(X) ̸= Y|X) = 1g⋆(X)=1(1 − r(X)) + 1g⋆(X)=0r(X).

Ainsi,

P(gn(X) ̸= Y|X,Dn)− P(g⋆(X) ̸= Y|X)

= r(X)(1gn(X)=0 − 1g⋆(X)=0) +
(
1 − r(X)

)
(1gn(X)=1 − 1g⋆(X)=1)

= (2r(X)− 1)(1gn(X)=0 − 1g⋆(X)=0)

= |2r(X)− 1|1gn(X) ̸=g⋆(X).

En effet, remarquons que 1gn(X)=0 − 1g⋆(X)=0 = −(1gn(X)=1 − 1g⋆(X)=1). Par
ailleurs, si 1gn(X)=0 ̸= 1g⋆(X)=0 alors soit 1gn(X)=0 = 1 et 1g⋆(X)=0 = 0,
auquel cas g⋆(X) = 1 et par définition on a r(X) > 1/2 et donc 2r(X)− 1 >
0 ; soit 1gn(X)=0 = 0 et 1g⋆(X)=0 = 1 et auquel cas par définition de g⋆ on a
r(X) ≤ 1/2 et donc 2r(X)− 1 ≤ 0.

Finalement,

P(gn(X) ̸= Y|Dn)−R⋆ = E
[
P(gn(X) ̸= Y|X,Dn)− P(g⋆(X) ̸= Y|X)

]
= 2

∫
Rd

|r(x)− 1/2|1gn(x) ̸=g⋆(x)µ(dx)

≤ 2
∫

Rd
|rn(x)− r(x)| µ(dx),

puisque gn(x) ̸= g⋆(x) implique |rn(x) − r(x)| ≥ |r(x) − 1/2|. En effet
si gn(x) ̸= g⋆(x) soit rn(x) > 1/2 et r(x) ≤ 1/2, soit rn(x) ≤ 1/2 et
r(x) > 1/2. Dans les deux cas |rn(x)− r(x)| ≥ |r(x)− 1/2|.

La 2ème assertion découle de la première par l’inégalité de Hölder.
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Pour déduire la 3ème assertion du théorème, on remarque que∫
Rd

|rn(x)− r(x)|µ(dx) = E(|rn(X)− r(X)| | Dn).

On prend l’espérance des deux parties de la première assertion du théo-
rème et on obtient :

0 ≤ ER(gn)− L⋆ ≤ 2E|rn(X)− r(X)|.

Il reste à appliquer ensuite l’inégalité de Jensen qui donne

E|rn(X)− r(X)| ≤ (E|rn(X)− r(X)|p)1/p.

Remarque : On retiendra du Théorème 6 que si l’on dispose d’un estima-
teur rn de la fonction de régression qui soit tel que∫

Rd
|rn(x)− r(x)|2 µ(dx) → 0 (3.2)

dans L1(P) (ou P-presque sûrement), alors la règle de classification asso-
ciée gn est automatiquement convergente par l’assertion 3 pour p = 2 (ou
fortement convergente par l’assertion 2 pour p = 2). (Rappel : voir la dé-
finition 1 pour la convergence et la convergence forte.) Ce sera le point de
départ de la preuve du théorème de Stone.

Il nous reste donc à savoir comment construire des estimateurs de la fonc-
tion de régression qui possèdent la propriété de convergence (3.2) ; c’est
l’objet du théorème de Stone.

3.2 Le théorème de Stone

Dans cette section, Y = {0, 1} ou R et nous allons construire des esti-
mateurs de la fonction de régression r(x) = E(Y|X = x) à partir du n-
échantillon Dn. Une façon canonique de procéder consiste à écrire

rn(x) =
n

∑
i=1

Wni(x)Yi, x ∈ Rd, (3.3)
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où chaque
Wni(x) = Wni(x, X1, . . . , Xn)

est une fonction borélienne réelle de x et X1, . . . , Xn (pas Y1, . . . , Yn).

Il est intuitivement clair que les couples (Xi, Yi) pour lesquels Xi est « proche »
de x (en un sens qui reste à préciser) devraient apporter davantage d’in-
formation sur r(x) que leurs homologues plus éloignés. En conséquence,
les poids Wni devront en règle générale être plus grands autour de x, de
telle sorte que rn(x) ainsi défini se présente comme une moyenne pondérée
des Yi correspondants aux Xi situés dans un voisinage de x. Voilà pourquoi
un estimateur rn de la forme (3.3) est appelé estimateur de type moyenne
locale. Bien souvent (mais pas toujours), les Wni(x) sont positifs et norma-
lisés à 1, de telle sorte que (Wn1(x), . . . , Wnn(x)) est en fait un vecteur de
probabilités.

Un exemple typique d’estimateur de type moyenne locale est l’estimateur
à noyau, qui est obtenu en prenant

Wni(x) =
K
(

x−Xi
h

)
∑n

j=1 K
(

x−Xj
h

) ,

où K est une fonction positive mesurable sur Rd avec le maximum en 0
(appelée noyau) et h est un paramètre strictement positif (appelé fenêtre),
en pratique fonction de n. (Si le dénominateur est nul, on pose Wni(x) =
1/n.) En d’autres termes, pour x ∈ Rd, l’estimateur à noyau de la fonction
de régression r, appelé estimateur de Nadaraya-Watson, est donné par

rn(x) =
∑n

i=1 K
(

x−Xi
h

)
Yi

∑n
j=1 K

(
x−Xj

h

) . (3.4)

(Si le dénominateur est nul, on pose rn(x) = 1
n ∑n

i=1 Yi.) En particulier, pour
le choix de noyau dit naïf K(z) = 1∥z∥≤1, on obtient

rn(x) =
∑n

i=1 1∥x−Xi∥≤hYi

∑n
j=1 1∥x−Xj∥≤h

,

ce qui montre que r(x) est estimé par la moyenne des Yi tels que la distance
euclidienne entre x et Xi ne dépasse pas h. Pour un noyau plus général K,
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le poids de Yi dépend de la distance entre x et Xi par l’intermédiaire de la
forme du noyau. Les noyaux les plus classiques sont le noyau d’Epanech-
nikov K(z) = (1 − ∥z∥2)1∥z∥≤1 et le noyau gaussien K(z) = e−∥z∥2

.

Un second exemple important d’estimateur de type moyenne locale nous
est fourni par l’estimateur des plus proches voisins :

rn(x) =
n

∑
i=1

vniY(i)(x), x ∈ Rd,

pour lequel (vn1, . . . , vnn) est un vecteur de poids déterministes normalisés
à 1, et la suite (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) est la permutation de
(X1, Y1), . . . , (Xn, Yn) correspondante aux distances croissantes des ∥Xi −
x∥ (en cas d’égalité ∥Xi − x∥ = ∥Xj − x∥ avec i < j, Xi sera arbitrairement
déclaré plus proche de x que Xj). En d’autres termes,

∥X(1)(x)− x∥ ≤ ∥X(2)(x)− x∥ ≤ · · · ≤ ∥X(n)(x)− x∥.

Pour s’assurer que cet estimateur est bien de la forme (3.3), il suffit de poser

Wni(x) = vnσi(x,X1,...,Xn),

où (σ1(x, X1, . . . , Xn), σ2(x, X1, . . . , Xn) . . . , σn(x, X1, . . . , Xn)) est la permu-
tation de (1, . . . , n) telle que Xi est le σi-ème plus proche voisin de x.

Parmi tous les choix possibles de vecteurs de poids (vn1, . . . , vnn), un cas
particulier important est obtenu en posant vni = 1/k pour 1 ≤ i ≤ k et
vni = 0 autrement, avec {k} = {kn} une suite d’entiers strictement positifs
ne dépassant pas n. L’estimateur résultant s’appelle estimateur des k-plus
proches voisins et s’écrit donc

rn(x) =
1
k

k

∑
i=1

Y(i)(x), x ∈ Rd.

Le principe de cet estimateur est naturel : pour estimer la fonction de ré-
gression autour de x, on regarde les k observations Xi les plus proches de
x et on fait la moyenne des Yi correspondants.

Le théorème ci-après, connu sous le nom de théorème de Stone, donne des
conditions suffisantes sur les poids Wni(x) garantissant que la fonction de
régression de type moyenne locale vérifie la convergence (3.2) dans L1(P)
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dès que la loi de (X, Y) vérifie EY2 < +∞. Pour simplifier, nous suppo-
serons désormais que les poids Wni(x) sont positifs et normalisés à 1 (i.e.,
∑n

i=1 Wni(x) = 1), ce qui fait de (Wn1(x), . . . , Wnn(x)) un vecteur de proba-
bilités.

Théorème 7 (Stone). Supposons que, quelle que soit la loi de X, les poids Wni
satisfont les 3 conditions suivantes :

1. Il existe une constante c telle que, pour toute fonction borélienne f : Rd →
R telle que E| f (X)| < ∞,

E

( n

∑
i=1

Wni(X) | f (Xi)|
)
≤ cE | f (X)| , pour tout n ≥ 1.

2. Pour tout a > 0,

E

( n

∑
i=1

Wni(X)1∥Xi−X∥>a

)
→ 0.

3. On a

E

(
max

1≤i≤n
Wni(X)

)
→ 0.

Alors, l’estimateur rn de la régression défini en (3.3) satisfait

E (rn(X)− r(X))2 = E

∫
Rd

|rn(x)− r(x)|2µ(dx) → 0,

quelle que soit la loi du couple (X, Y), dès que EY2 < +∞.

La condition 2 exprime le fait que la contribution des poids à l’extérieur
de n’importe quelle boule fermée centrée en X doit être asymptotiquement
négligeable. En d’autres termes, seuls les points situés dans un voisinage
local de la cible sont importants pour l’évaluation de la moyenne. La condi-
tion 3 interdit à un seul point d’avoir une influence disproportionnée sur
le calcul de l’estimateur. Enfin, l’hypothèse 1, parfois appelée condition de
Stone, est essentiellement de nature technique. Insistons bien sur le fait que
le résultat du théorème est universel, au sens où la convergence est valable
quelle que soit la loi du couple (X, Y), dès que EY2 < +∞. En particulier
en classification Y = {0, 1}, noter que cette dernière condition d’ordre est
toujours satisfaite.
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Démonstration du Théorème 7. On introduit

r̃n(x) =
n

∑
i=1

Wni(x)r(Xi).

(Notez que ce n’est pas un estimateur, c’est une quantité qui dépend de
la fonction de régression inconnue r.) En utilisant l’inégalité (a + b)2 ≤
2(a2 + b2), on a

E (rn(X)− r(X))2 = E (rn(X)− r̃n(X) + r̃n(X)− r(X))2

≤ 2
(

E (rn(X)− r̃n(X))2 + E (r̃n(X)− r(X))2
)

. (3.5)

Il suffit donc de montrer que chacun des deux termes de la borne ci-dessus
tend vers 0 lorsque n tend vers l’infini. Comme les poids Wni(x) sont po-
sitifs et normalisés (∑n

i=1 Wn,i(x) = 1), l’inégalité de Jensen permet d’écrire
que

E (r̃n(X)− r(X))2 = E

( n

∑
i=1

Wni(X) (r(Xi)− r(X))

)2

≤ E
n

∑
i=1

Wni(X) (r(Xi)− r(X))2 .

Par densité dans L2(µ) des fonctions continues à support compact, pour
tout ε > 0, on peut trouver r′ continue à support compact telle que

E(r(X)− r′(X))2 =
∫

|r(x)− r′(x)|2µ(dx) ≤ ε.

Alors, avec (a + b + c)2 ≤ 3(a2 + b2 + c2), on a

E
n

∑
i=1

Wni(X)(r(Xi)− r(X))2 ≤ 3E
n

∑
i=1

Wni(X)(r(Xi)− r′(Xi))
2

+ 3E
n

∑
i=1

Wni(X)(r′(Xi)− r′(X))2

+ 3E
n

∑
i=1

Wni(X)(r′(X)− r(X))2.
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En utilisant la première condition et ∑n
i=1 Wni(X) = 1, ceci implique

E
n

∑
i=1

Wni(X)(r(Xi)− r(X))2

≤ 3cE(r(X)− r′(X))2 + 3E
n

∑
i=1

Wni(X)(r′(Xi)− r′(X))2 + 3E(r′(X)− r(X))2

≤ 3(c + 1)ε + 3E
n

∑
i=1

Wni(X)(r′(Xi)− r′(X))2.

Considérons le second terme de droite. Puisque r′ est continue à support
compact, elle est aussi uniformément continue. Ainsi, il existe ρ > 0 tel que
∥x − x′∥ ≤ ρ implique |r′(x)− r′(x′)|2 ≤ ε. Par ailleurs, r′ est aussi bornée.
Ainsi,

E
n

∑
i=1

Wni(X)(r′(Xi)− r′(X))2

≤ 4∥r′∥2
∞E

( n

∑
i=1

Wni(X)1∥Xi−X∥>ρ

)
+ E

( n

∑
i=1

Wni(X)ε

)
= 4∥r′∥2

∞E

( n

∑
i=1

Wni(X)1∥Xi−X∥>ρ

)
+ ε.

Ainsi, d’après la condition 2, puisque ε est arbitraire, le terme ci-dessus
peut-être rendu arbitrairement petit et on obtient

E

( n

∑
i=1

Wni(X) (r(Xi)− r(X))2
)
→ 0

ce qui implique E (r̃n(X)− r(X))2 → 0.

Il nous reste à contrôler le premier terme du membre de droite de l’inégalité
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(3.5). Observons pour cela que, pour i ̸= j,

E
(
Wni(X)

(
Yi − r(Xi)

)
Wnj(X)

(
Yj − r(Xj)

))
= E

[
E
(
Wni(X)

(
Yi − r(Xi)

)
Wnj(X)

(
Yj − r(Xj)

)
|X, X1, . . . , Xn, Yi

) ]
= E

[
Wni(X)

(
Yi − r(Xi)

)
Wnj(X)E(Yj − r(Xj)|X, X1, . . . , Xn, Yi)

]
= E

[
Wni(X)

(
Yi − r(Xi)

)
Wnj(X)E(Yj − r(Xj)|Xj)

]
(par indépendence entre (Xj, Yj) et X, X1, . . . , Xj−1, Xj+1, . . . , Xn, Yi)

= E
[
Wni(X)

(
Yi − r(Xi)

)
Wnj(X)

(
r(Xj)− r(Xj)

)]
= 0.

Du coup,

E (rn(X)− r̃n(X))2 = E

( n

∑
i=1

Wni(X) (Yi − r(Xi))

)2

=
n

∑
i=1

n

∑
j=1

E
(
Wni(X) (Yi − r(Xi))Wnj(X)

(
Yj − r(Xj)

))
=

n

∑
i=1

E
(

W2
ni(X) (Yi − r(Xi))

2
)

.

On note
σ2(x) = E((Y − r(X))2|X = x)

et on remarque que puisque EY2 < +∞, on a Eσ2(X) = E(Y − r(X))2 =
EY2 − E(r(X))2 < +∞. Ainsi,

E (rn(X)− r̃n(X))2 =
n

∑
i=1

E
(

W2
ni(X)E

[
(Yi − r(Xi))

2|Xi

])
=

n

∑
i=1

E
(

W2
ni(X)σ2(Xi)

)
.
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Si σ2(·) est une fonction bornée, on conclut en utilisant la condition 3 via :

E (rn(X)− r̃n(X))2 ≤ ∥σ2∥∞E

( n

∑
i=1

W2
ni(X)

)
≤ ∥σ2∥∞E

(
max

1≤i≤n
Wni(X)

n

∑
j=1

Wnj(X)

)
= ∥σ2∥∞E

(
max

1≤i≤n
Wni(X)

)
→ 0.

Sinon, puisque σ2 ∈ L1(µ), en utilisant à nouveau un argument de densité,
pour tout ε > 0, il existe une fonction continue bornée σ̃2 telle que

E|σ̃2(X)− σ2(X)| ≤ ε.

Par ailleurs,

E (rn(X)− r̃n(X))2 =
n

∑
i=1

E
(

W2
ni(X)σ2(Xi)

)
≤

n

∑
i=1

E
(

W2
ni(X)σ̃2(Xi)

)
+

n

∑
i=1

E
(

W2
ni(X)|σ2(Xi)− σ̃2(Xi)|

)
et on utilise la première condition pour traiter le second terme. ceci termine
la preuve.

3.3 Estimateur de Nadaraya-Watson pour la
régression

Dans cette section, on se place dans le cadre de la régression, avec Y =
R. Nous allons nous intéresser à l’estimateur à noyau de la fonction de
régression (3.4) et utiliser le théorème de Stone (théorème 7) pour prouver
la convergence universelle de cet estimateur sous des conditions générales
sur le noyau K et la fenêtre h. On se place dans la cas d’un noyau à support
compact, c’est le cas par exemple du noyau d’Epanechnikov. La condition
que K est non nul sur une boule au voisinage de 0 est faible.
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Théorème 8. On suppose que K : Rd → R est à support compact et qu’il existe
η > 0, b > 0 tels que K(x) > b1x∈B(0,η). Alors, si hn → 0 avec nhd

n → +∞, l’es-
timateur à noyau (3.4) est universellement consistant pour le risque quadratique
intégré, i.e.

E(rn(X)− r(X))2 = E

∫
Rd
(rn(x)− r(x))2µ(dx) → 0,

quelle que soit la loi du couple (X, Y), dès que EY2 < +∞.

Démonstration. Pour prouver le résultat, il suffit de vérifier que les condi-
tions 1 − 3 du théorème de Stone (Théorème 7) sont satisfaites sous les
conditions du théorème. On note Kh(·) = K(·/h). On rappelle que les poids
Wni sont définis par

Wni(x) =
Kh(x − Xi)

∑n
j=1 Kh(x − Xj)

.

Commençons par vérifier la première condition du théorème de Stone. Soit
f une fonction borélienne telle que E| f (X)| < +∞. Alors

E
n

∑
i=1

Wni(X)| f (Xi)| = E
n

∑
i=1

Kh(X − Xi)

∑n
j=1 Kh(X − Xj)

| f (Xi)|

= nE
Kh(X − X1)

∑n
j=1 Kh(X − Xj)

| f (X1)|

= n
∫

Rd
| f (u)|E Kh(X − u)

Kh(X − u) + ∑n
j=2 Kh(X − Xj)

µ(du)

= n
∫

Rd
| f (u)|E

∫
Rd

Kh(x − u)
Kh(x − u) + ∑n

j=2 Kh(x − Xj)
µ(dx)µ(du).

Il suffit donc de montrer qu’il existe c > 0 tel que pour tout u ∈ Rd,

E

∫
Rd

Kh(x − u)
Kh(x − u) + ∑n

j=2 Kh(x − Xj)
µ(dx) ≤ c

n
.

Puisque le support de K est compact, il peut être recouvert par une union
finie de boules (B(ci, η/2))1≤i≤L. Alors, pour tout x ∈ Rd, u ∈ Rd,

Kh(x − u) =
L

∑
i=1

Kh(x − u)1
{x − u

h
∈ B(ci, η/2)

}
=

L

∑
i=1

Kh(x − u)1{x ∈ u + hci + B(0, hη/2)}.
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On obtient

E

∫
Rd

Kh(x − u)
Kh(x − u) + ∑n

j=2 Kh(x − Xj)
µ(dx)

=
L

∑
i=1

E

∫
u+hci+B(0,hη/2)

Kh(x − u)
Kh(x − u) + ∑n

j=2 Kh(x − Xj)
µ(dx)

≤
L

∑
i=1

E

∫
u+hci+B(0,hη/2)

1
1 + ∑n

j=2 Kh(x − Xj)/∥K∥∞
µ(dx).

Par ailleurs, si x ∈ u + hci + B(0, hη/2) alors u + hci + B(0, hη/2) ⊂ x +
B(0, hη) (faire un dessin !) et par hypothèse K(x) > b1x∈B(0,η) d’où il vient

E

∫
Rd

Kh(x − u)
Kh(x − u) + ∑n

j=2 Kh(x − Xj)
µ(dx)

≤
L

∑
i=1

E

∫
u+hci+B(0,hη/2)

1
1 + b/∥K∥∞ ∑n

j=2 1{Xj ∈ x + B(0, hη)}µ(dx)

≤
L

∑
i=1

E

∫
u+hci+B(0,hη/2)

1
1 + b/∥K∥∞ ∑n

j=2 1{Xj ∈ u + hci + B(0, hη/2)}µ(dx)

≤ ∥K∥∞

b

L

∑
i=1

E
µ(u + hci + B(0, hη/2))

1 + ∑n
j=2 1{Xj ∈ u + hci + B(0, hη/2)} ,

(puisque b/∥K∥∞ ≤ 1). On utilise alors le lemme technique suivant : Si
U ∼ B(n, p) alors

E
1

1 + U
≤ 1

(n + 1)p
.

En effet,

E
1

1 + U
=

n

∑
k=0

1
k + 1

(
n
k

)
pk(1 − p)n−k

=
1

(n + 1)p

n

∑
k=0

(
n + 1
k + 1

)
pk+1(1 − p)n−k

≤ 1
(n + 1)p

n+1

∑
j=0

(
n + 1

j

)
pj(1 − p)n−j+1

=
1

(n + 1)p
(p + (1 − p))n+1 =

1
(n + 1)p

.
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Ainsi, la variable aléatoire ∑n
j=2 1{Xj ∈ u + hci + B(0, hη/2)} suit une loi

B(n − 1, p) avec p = µ(u + hci + B(0, hη/2)) donc

E

∫
Rd

Kh(x − u)
Kh(x − u) + ∑n

j=2 Kh(x − Xj)
µ(dx)

≤ ∥K∥∞

b

L

∑
i=1

µ(u + hci + B(0, hη/2))
nµ(u + hci + B(0, hη/2))

=
L∥K∥∞

bn
,

ce qui termine la vérification de la première condition du théorème de
Stone.

La seconde condition de ce théorème est vraie puisque K est à support
compact donc pour tout a > 0, dès que h = hn est assez petit,

n

∑
i=1

Wni(X)1∥Xi−X∥>a =
∑n

i=1 Kh(X − Xi)1∥Xi−X∥>a

∑n
j=1 Kh(X − Xj)

= 0.

Vérifions enfin la troisième condition du théorème. Si ∑n
j=1 Kh(X − Xj) = 0

p.s, alors on rappelle que Wni(X) = 1/n pour tout 1 ≤ i ≤ n, et la condition
est triviale. Sinon, on choisit M > 0 et

E max
1≤i≤n

Wni(X) = E max
1≤i≤n

Kh(X − Xi)

∑n
j=1 Kh(X − Xj)

≤ ∥K∥∞

b
E

1
∑n

j=1 1∥X−Xj∥∈B(0,hη)
1∑n

j=1 1∥X−Xj∥∈B(0,hη)>0

≤ ∥K∥∞

b

[
E

1X∈B(0,M)1∑n
j=1 1∥X−Xj∥∈B(0,hη)>0

∑n
j=1 1∥X−Xj∥∈B(0,hη)

+ µ(B(0, M)c)

]
.

Le premier élément du terme entre crochets s’écrit

E
[
1X∈B(0,M)E

( 1∑n
j=1 1Xj∈B(X,hη)

∑n
j=1 1Xj∈B(X,hη)

|X
)]

= E
[
1X∈B(0,M)E

(1UX>0

UX
|X
)]

.

Or UX = ∑n
j=1 1Xj∈B(X,hη) est une variable aléatoire de loi conditionnelle

à X, binomiale B(n, p) avec p = µ(B(X, hη)). On peut montrer comme
précédemment (exercice) que

E
(1UX>0

UX
|X
)
≤ 2

(n + 1)µ(B(X, hη))
.
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On en déduit

E max
1≤i≤n

Wni(X) ≤ ∥K∥∞

b

[
E

21X∈B(0,M)

(n + 1)µ(B(X, hη))
+ µ(B(0, M)c)

]
.

Pour tout ε > 0, on peut choisir M > 0 assez grand pour avoir µ(B(0, M)c) ≤
ε. Pour finir, il faut donc vérifier que

E
1X∈B(0,M)

(n + 1)µ(B(X, hη))

tend vers 0. Pour tout n ≥ 1, la boule B(0, M) peut être recouverte par un
nombre kn ≤ C/hd

n de boules de rayon hη/2 = hnη/2, i.e.

B(0, M) ⊂ ∪kn
i=1B(ci, hnη/2), kn ≤ C

hd
n

.

(Pour le voir, on peut raisonner sur la norme uniforme, faire une grille
de pas 1/hn dans chacune des dimensions, et utiliser les équivalences de
norme). Alors,

E
1X∈B(0,M)

(n + 1)µ(B(X, hη))
=
∫

B(0,M)

1
(n + 1)µ(B(x, hnη))

dµ(x)

≤
kn

∑
i=1

∫ 1x∈B(ci,hnη/2)

nµ(B(x, hnη))
dµ(x)

≤
kn

∑
i=1

∫ 1x∈B(ci,hnη/2)

nµ(B(ci, hnη/2))
dµ(x) =

kn

n
≤ C

nhd
n

,

puisque si x ∈ B(ci, hnη/2) alors B(ci, hnη/2) ⊂ B(x, hnη). On obtient que
sous la condition nhd

n → 0, la 3ème condition du théorème de Stone est
satisfaite. Ceci achève la preuve de notre théorème.

3.4 k-plus proches voisins pour la classification

Dans cette section, on se place dans le cadre Y = {0, 1} et le problème
de classification supervisée. Conformément à ce que nous avons dit en
introduction de ce chapitre, on associe naturellement à un estimateur de
type moyenne locale la règle de classification plug-in

gn(x) =
{

1 si ∑n
i=1 Wni(x)Yi > 1/2

0 sinon,
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ou, de façon équivalente lorsque les poids sont normalisés (i.e. lorsque ∑n
i=1

Wni(x) = 1),

gn(x) =
{

1 si ∑n
i=1 Wni(x)1Yi=1 > ∑n

i=1 Wni(x)1Yi=0
0 sinon.

Dans la suite, k = kn est un entier strictement positif compris entre 1 et n (et
fonction de n). On rappelle que (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) dé-
signe le réordonnement de l’échantillon original (X1, Y1), . . . , (Xn, Yn) sui-
vant les distances euclidiennes croissantes des Xi à x.

Nous avons vu dans la section 3.2 que la règle de classification des k-plus
proches voisins a pour expression

gn(x) =

{
1 si 1

kn
∑kn

i=1 1Y(i)(x)=1 > 1
kn

∑kn
i=1 1Y(i)(x)=0

0 sinon

ou, de façon équivalente,

gn(x) =

{
1 si ∑kn

i=1 1Y(i)(x)=1 > ∑kn
i=1 1Y(i)(x)=0

0 sinon.

Le prochain théorème, dont la preuve utilise le théorème de Stone, établit
la convergence universelle de la règle gn, pourvu que k croisse avec n mais
pas trop vite.

Théorème 9. Supposons que kn → +∞ et kn/n → 0. Alors la règle de classifi-
cation des k-plus proches voisins est universellement convergente, i.e.

ER(gn) → R⋆

quelle que soit la loi du couple (X, Y).

Pour prouver le résultat, il suffit simplement de s’assurer que les conditions
1− 3 du théorème de Stone (Théorème 7) sont effectivement vérifiées par la
règle des k-plus proches voisins. Pour ce faire, nous aurons au préalable be-
soin de quelques lemmes techniques. Pour simplifier un peu, nous suppo-
serons dans la suite que les égalités entre distances ∥Xi − x∥ = ∥Xj − x∥ se
produisent avec probabilité zéro (c’est par exemple le cas lorsque ∥X − x∥
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admet une densité par rapport à la mesure de Lebesgue). La preuve du
Théorème 9 s’étend au cas général, au prix de quelques petits aménage-
ments techniques pour gérer les distances ex-aequo. On rappelle que le
support de la loi µ est défini comme l’ensemble des x ∈ Rd tels que, pour
tout ε > 0, µ(B(x, ε)) > 0, avec B(x, ε) la boule fermée de centre x et
de rayon ε. Alternativement, il s’agit du plus petit ensemble fermé de µ-
mesure 1.

Lemme 3. Soit x dans le support de µ. Alors, si kn/n → 0, on a

∥X(kn)(x)− x∥ → 0, P-p.s.

Démonstration. Fixons ε > 0 et observons, puisque x appartient au sup-
port de µ, que µ(B(x, ε)) > 0. Notons également l’égalité suivante entre
événements :{

∥X(kn)(x)− x∥ > ε

}
=

{
1
n

n

∑
i=1

1Xi∈B(x,ε) <
kn

n

}
.

Or, d’après la loi forte des grands nombres,

1
n

n

∑
i=1

1Xi∈B(x,ε) → µ (B(x, ε)) > 0, P-p.s.

Comme kn/n → 0, on en conclut immédiatement que ∥X(kn)(x) − x∥ →
0, P-p.s.

Lemme 4. Soit ν une mesure de probabilité sur Rd. Fixons x′ ∈ Rd et définissons,
pour a ≥ 0,

Ea(x′) =
{

x ∈ Rd : ν
(

B(x, ∥x′ − x∥)
)
≤ a

}
.

Alors
ν
(
Ea(x′)

)
≤ γda,

où γd est une constante strictement positive ne dépendant que de d.

Démonstration. Fixons x′ ∈ Rd et considérons une famille C1, . . . , Cγd de
demi-cônes d’angle π/6 centrés en x′, suffisamment nombreux pour que
leur union recouvre Rd. En d’autres termes,

γd⋃
j=1

Cj = Rd.
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Figure 3.1 – Illustration de la propriété : si u, u′ ∈ Cj et ∥u − x′∥ ≤ ∥u′ −
x′∥, alors ∥u − u′∥ ≤ ∥u′ − x′∥

Commençons par montrer que si u, u′ ∈ Cj et ∥u − x′∥ ≤ ∥u′ − x′∥, alors
∥u − u′∥ ≤ ∥u′ − x′∥ (voir Figure 3.4). refaire ce dessin En effet, notons
u − x′ = a et u′ − x′ = b, alors u − u′ = a − b. Par hypothèse ∥a∥ ≤ ∥b∥
et ⟨a, b⟩/(∥a∥ × ∥b∥) ≥ cos(π/3) = 1/2. Ainsi, ∥a − b∥2 = ∥a∥2 + ∥b∥2 −
2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 − ∥a∥ × ∥b∥ ≤ ∥b∥2 + ∥a∥(∥a∥ − ∥b∥) ≤ ∥b∥2, d’où
∥a − b∥ ≤ ∥b∥.

On a
ν
(
Cj ∩ Ea(x′)

)
= lim

R→R−
0

ν
(
Cj ∩ B(x′, R) ∩ Ea(x′)

)
.

où R0 = sup{R : ∃x∗ ∈ Cj ∩ Ea(x′) : ∥x′ − x∗∥ = R} (il se peut que
R0 = ∞). Or pour tout R < R0

ν
(
Cj ∩ B(x′, R) ∩ Ea(x′)

)
≤ ν

(
Cj ∩ B(x′, R)

)
= ν

(
Cj ∩ B(x′, ∥x∗ − x′∥

)
)

avec x∗ ∈ C j ∩ Ea(x′). Par la propriété de cônes ci-dessus

Cj ∩ B(x′, ∥x∗ − x′∥) ⊂ B(x∗, ∥x∗ − x′∥).

En effet, si x ∈ Cj ∩ B(x′, ∥x∗ − x′∥), alors ∥x − x′∥ ≤ ∥x∗ − x′∥, et comme
x, x∗ ∈ Cj on a ∥x − x∗∥ ≤ |x∗ − x′∥, donc x ∈ B(x∗, ∥x∗ − x′∥).

Or, comme x∗ ∈ Ea(x′), on déduit par la définition de Ea(x′) :

ν
(

B(x∗, ∥x∗ − x′∥)
)
≤ a.
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Finalement pour tout R > 0 tel que ∃x∗ ∈ Cj ∩ Ea(x′) : ∥x′ − x∗∥ = R on a

ν
(
Cj ∩ B(x′, R) ∩ Ea(x′)

)
≤ a.

Alors
ν(Cj ∩ Ea(x′)) ≤ a

ce qu’il fallait démontrer.

Le corollaire suivant énonce une conséquence fondamentale du lemme pré-
cédent : le nombre de points dans {X1, . . . , Xn} pour lesquels X est l’un des
k plus proches voisins, ne dépasse pas une constante fois k. Dans la suite,
l’abréviation k-ppv signifie « k-plus proches voisins » .

Corollaire 2. Si les égalités entre distances se produisent avec probabilité zéro,
alors P-p.s., le nombre de Xi tels que X soit parmi ses k-ppv est borné par knγd,
i.e.

n

∑
i=1

1
{

X est parmi les k-ppv de Xi dans {X1, . . . , Xi−1, X, Xi+1, . . . , Xn}
}
≤ knγd,

P-p.s.

Démonstration. On applique le Lemme 4 avec a = kn/n et ν la mesure
empirique µn associée à X1, . . . , Xn. Avec ce choix, on a

Ekn/n(X) =
{

x ∈ Rd : µn (B(x, ∥X − x∥)) ≤ kn/n
}

et, P-p.s.,

Xi ∈ Ekn/n(X)

⇔ µn (B(Xi, ∥X − Xi∥)) ≤ kn/n
⇔ X est parmi les kn-ppv de Xi dans {X1, . . . , Xi−1, X, Xi+1, . . . , Xn}.

(Noter que la seconde équivalence utilise le fait que les égalités entre dis-
tances se produisent avec probabilité zéro ! ). Ainsi, en appliquant le Lemme
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4, il vient, P-p.s.,

n

∑
i=1

1{X est parmi les kn-ppv de Xi dans {X1, . . . , Xi−1, X, Xi+1, . . . , Xn}}

=
n

∑
i=1

1{Xi ∈ Ekn/n(X)}

= n × µn (Ekn/n(X))

≤ knγd.

Lemme 5. Supposons que les égalités entre distances se produisent avec probabilité
zéro. Alors, pour toute fonction borélienne f : Rd → R telle que E| f (X)| < ∞,
on a

kn

∑
i=1

E
∣∣ f (X(i)(X)

)∣∣ ≤ knγdE | f (X)| ,

où γd est une constante strictement positive ne dépendant que de d.

Remarque : Avant de montrer ce lemme, remarquons que la relation « être
parmi les k-ppv » n’est pas une relation symétrique. Ainsi, si on se donne
un ensemble de points U = {u1, . . . , un} ∈ Rdn, on peut avoir ui est un
k-ppv de uj dans U \ {uj} sans que uj soit un k-ppv de ui dans U \ {ui}.

Démonstration. Prenons f une fonction comme dans l’énoncé. Alors

kn

∑
i=1

E
∣∣ f (X(i)(X)

)∣∣
= E

( n

∑
i=1

| f (Xi)| 1Xi est parmi les kn-ppv de X dans {X1, . . . , Xn}

)
= E

(
| f (X)|

×
n

∑
i=1

1X est parmi les kn-ppv de Xi dans {X1, . . . , Xi−1, X, Xi+1, . . . , Xn}

)
(en échangeant X et Xi qui sont de même loi !)

≤ E (| f (X)| knγd) ,

d’après le Corollaire 2. Ceci conclut la preuve du lemme.
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Nous sommes désormais en mesure de démontrer le Théorème 9. Il suffit
pour cela de vérifier les conditions du théorème de Stone (théorème 7),
avec Wni(x) = 1/kn si Xi est parmi les kn plus proches voisins de X et
Wni(x) = 0 sinon.

Démonstration du Théorème 9. La condition 3 est évidente dans la mesure où
kn → +∞. Pour la condition 2, on note que

E

( n

∑
i=1

Wni(X)1∥Xi−X∥]>a

)
= E

(
1
kn

kn

∑
i=1

1∥X(i)(X)−X∥>a

)
,

de sorte que par le lemme de Cesàro,

E

( n

∑
i=1

Wni(X)1∥Xi−X∥>a

)
→ 0

dès que, pour tout a > 0, le terme général

P
(
∥X(kn)(X)− X∥ > a

)
→ 0.

Or,

P
(
∥X(kn)(X)− X∥ > a

)
=
∫

Rd
P
(
∥X(kn)(x)− x∥ > a

)
µ(dx).

Pour x fixé dans le support de µ, le Lemme 3 indique que la convergence

P
(
∥X(kn)(x)− x∥ > a

)
→ 0

a lieu lorsque kn/n → 0. Le résultat s’en déduit par convergence dominée,
en notant que le support de µ est de µ-mesure 1.

Examinons pour terminer la condition 1. Il s’agit de voir que, pour toute
fonction f telle que E| f (X)| < ∞, on a

E

(
1
kn

n

∑
i=1

| f (Xi)| 1Xi est parmi les kn-ppv de X

)
≤ cE | f (X)| ,

pour une certaine constante c. Comme

E

(
1
kn

n

∑
i=1

| f (Xi)| 1Xi est parmi les kn-ppv de X

)
= E

(
1
kn

kn

∑
i=1

∣∣ f (X(i)(X)
)∣∣),

c’est précisément l’énoncé du Lemme 5.
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Introduction au clustering
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Chapitre 4

Quantification et clustering

Le clustering est une technique de classification non supervisée : contrai-
rement à la partie précédente, on ne dispose pas d’un échantillon dont les
étiquettes sont observées pour faire notre apprentissage. Nous présentons
ici le clustering à travers ses liens avec la quantification.

4.1 Principe de la quantification

La quantification est un principe probabiliste dont l’objectif est de com-
presser l’information contenue dans une variable aléatoire X à valeurs dans
(Rd, ∥ · ∥), où ∥ · ∥ désigne la norme euclidienne. On se donne dorénavant
une telle variable X, en notant µ sa loi et en supposant que E∥X∥2 < ∞ ou,
ce qui est équivalent, que ∫

Rd
∥x∥2µ(dx) < ∞.

Définition 3. Soit k un entier ≥ 1. Un quantifieur q d’ordre k est une fonction
mesurable q : Rd → C ⊂ Rd avec |C | ≤ k.

Un quantifieur q d’ordre k est donc caractérisé par :

▷ Un alphabet C = {c1, . . . , ck}.
▷ Une partition P = {A1, . . . , Ak} de Rd, avec la numérotation imposée

par
q(x) = cj ⇔ x ∈ Aj.
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On écrira dans la suite q = (C , P). Un quantifieur apparaît ainsi comme
un outil de compression de l’information. L’étape suivante consiste alors
à se doter d’un critère mesurant la pertinence de la compression de la
variable aléatoire X (ou de sa loi µ) au travers de q.

Définition 4. La distorsion (pour X ou µ) d’un quantifieur q = (C , P) d’ordre
k est définie par

D(µ, q) = E∥X − q(X)∥2 =
∫

Rd
∥x − q(x)∥2µ(dx).

La distorsion minimale à l’ordre k est

D⋆
k (µ) = inf

q
D(µ, q),

où l’infimum est évalué sur tous les quantifieurs d’ordre k.

Bien entendu, plus la distorsion est faible, meilleure est la compression. Par
ailleurs, comme on s’en doute, la qualité d’une quantification s’améliore
lorsque k grandit. Ce phénomène est précisé dans le lemme ci-dessous.

Lemme 6. La suite des distorsions minimales à l’ordre k décroît vers 0 lorsque k
grandit, i.e. D⋆

k (µ) ↘ 0 si k → +∞.

Démonstration. Tout d’abord, il est clair que la distorsion minimale décroît
à mesure que son ordre augmente. Puis, comme Rd est un espace métrique
complet, la mesure bornée ν définie pour tout borélien A de Rd par

ν(A) =
∫

A
∥x∥2µ(dx)

est tendue, i.e. pour tout ε ∈ (0, 1], il existe un compact K tel que ν(K) ≥
ν(Rd)− ε. On note {c1, c2, . . .} un sous-ensemble dénombrable dense dans
Rd, alors pour tout ϵ > 0, on a K ⊂ ⋃∞

j=1 B(cj,
√

ε). Comme K est compact,
il existe un k > 0 (assez grand) tel que

K ⊂ B :=
k⋃

j=1

B(cj,
√

ε).

On a donc ν(B) ≥ ν(Rd)− ε. Notons maintenant qk+1 le quantifieur d’ordre
k + 1 d’alphabet {c1, . . . , ck, 0} (en supposant, sans perte de généralité, que
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0 /∈ {c1, c2, . . .}) et de partition {A1, . . . , Ak, Bc}, avec A1 = B(c1,
√

ε) et,
pour j = 2, . . . , k, Aj = B(cj,

√
ε) \ (∪j−1

l=1Al). Comme ∥x − cj∥ ≤
√

ε si
x ∈ Aj, on a

D⋆
k+1(µ) ≤ Dk+1(µ, qk+1) =

∫
Rd

∥x − qk+1(x)∥2µ(dx)

=
k

∑
j=1

∫
Aj

∥x − cj∥2µ(dx) +
∫

Bc
∥x∥2µ(dx)

≤ εµ

( k⋃
j=1

Aj

)
+ ν(Bc) ≤ 2ε,

ce qui achève la preuve.

Parmi toutes les façons possibles de compresser l’information, la classe
des quantifieurs de type plus proches voisins, que nous abrégerons désor-
mais en quantifieurs PPV, joue un rôle bien particulier. Dans la suite, on
suppose que les quantifieurs sont d’ordre k et on note, pour un alphabet
C = {c1, . . . , ck} ⊂ Rd de taille k, PV(C ) la partition de Voronoï associée à
C , définie par

A1 =
{

x ∈ Rd : ∥x − c1∥ ≤ ∥x − cℓ∥, ∀ℓ = 1, . . . , k
}

, et

Aj =
{

x ∈ Rd : ∥x − cj∥ ≤ ∥x − cℓ∥, ∀ℓ = 1, . . . , k
}
\

j−1⋃
t=1

At,

pour j = 2, . . . , k.

Définition 5. Un quantifieur d’ordre k est un quantifieur PPV si sa partition est
une partition de Voronoï associée à son alphabet. En d’autres termes, un quantifieur
PPV s’écrit q = (C , PV(C )), avec C ⊂ Rd de cardinal inférieur ou égal à k.

Un quantifieur PPV noté q est donc entièrement caractérisé par son alpha-
bet C (dont les éléments sont appelés centres ou centroïdes), via la règle

∥x − q(x)∥ = min
cj∈C

∥x − cj∥,

les égalités entre distances sur le bord des cellules étant brisées en faveur
des plus petits indices. On notera les propriétés élémentaires suivantes.
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Proposition 3. Soit qppv un quantifieur PPV d’alphabet C = {c1, . . . , ck}. Alors

D(µ, qppv) = E min
1≤j≤k

∥X − cj∥2 =
∫

Rd
min

1≤j≤k
∥x − cj∥2µ(dx).

En outre, pour tout quantifieur avec le même alphabet et une autre partition q =
(C , P), on a D(µ, qppv) ≤ D(µ, q).

Démonstration. Pour la première propriété, en désignant par PV(C ) =
{AV,1, . . . , AV,k} la partition de Voronoï associée à C :

D(µ, qppv) =
∫

Rd
∥x − qppv(x)∥2µ(dx) =

k

∑
j=1

∫
AV,j

∥x − cj∥2µ(dx)

=
k

∑
j=1

∫
AV,j

min
1≤i≤k

∥x − ci∥2µ(dx)

=
∫

Rd
min

1≤i≤k
∥x − ci∥2µ(dx).

Puis, pour la seconde propriété, si P = {A1, . . . , Ak} est la partition d’un
autre quantificateur q, on a :

D(µ, qppv) =
∫

Rd
min

1≤i≤k
∥x − ci∥2µ(dx)

=
k

∑
j=1

∫
Aj

min
1≤i≤k

∥x − ci∥2µ(dx)

≤
k

∑
j=1

∫
Aj

∥x − cj∥2µ(dx)

=
∫

Rd
∥x − q(x)∥2µ(dx) = D(µ, q),

par définition de la distorsion.

La conséquence fondamentale de cette dernière proposition est que les
quantifieurs de distorsion minimale, s’ils existent, sont à rechercher parmi
les quantifieurs du type qppv = (c, PV(c)) avec c = (c1, . . . , ck) ∈ Rdk,
(noter l’abus de notation), de distorsion

W(µ, c) :=
∫

Rd
min

1≤j≤k
∥x − cj∥2µ(dx) = D(µ, qppv).
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Théorème 10. Parmi les quantificateurs d’ordre k, il existe un quantifieur de
distorsion minimale.

Esquisse de démonstration. D’après la Proposition 3, on peut restreindre l’étude
aux quantifieurs PPV. Il s’agit donc de montrer qu’il existe c⋆ ∈ Rdk tel que

W(µ, c⋆) = inf
c∈Rdk

W(µ, c).

On prouve d’abord (admis ici) qu’il existe R > 0 tel que

inf
c∈Rdk

W(µ, c) = inf
∥c∥≤R

W(µ, c).

On établit ensuite que la fonction Rdk ∋ c 7→ W(µ, c) est continue. Ob-
servons pour cela que la fonction x 7→ min1≤j≤k ∥x − cj∥ est continue. Dès
lors, pour c0 = (c1,0, . . . , ck,0) ∈ Rdk fixé, on a

lim
c→c0

W(µ, c) =
∫

Rd
lim
c→c0

min
1≤j≤k

∥x − cj∥2µ(dx)

(d’après le théorème de Lebesgue)

=
∫

Rd
min

1≤j≤k
∥x − cj,0∥2µ(dx)

(par continuité)
= W(µ, c0),

ce qui montre bien que W(µ, ·) est continue.

On déduit de cette dernière propriété et de la compacité de la boule B(0, R)
de Rdk qu’il existe c⋆ ∈ Rdk minimum de W(µ, ·). Le quantifieur q⋆ =
(c⋆, Pppv(c⋆)) est alors de distorsion minimale car

W(µ, c⋆) = inf
c∈Rdk

W(µ, c) = inf
q

D(µ, q) = D⋆(µ).

4.2 Quantification empirique et clustering

En pratique, la loi µ de la variable aléatoire X est inconnue et il est donc, par
voie de conséquence, impossible de procéder à sa quantification optimale.
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On dispose cependant bien souvent d’un n-échantillon i.i.d. X1, . . . , Xn
formé de variables aléatoires indépendantes entre elles, de même loi que X
et indépendante de cette dernière. C’est à partir de cet échantillon que l’on
va s’attacher à construire un quantifieur empirique qn(·) = qn(·; X1, . . . , Xn)
dont les performances se rapprochent si possible de celles du quantifieur
optimal.

Dans ce contexte, la distorsion pour µ du quantifieur empirique qn (d’ordre
k) est naturellement définie par

D(µ, qn) =
∫

Rd
∥x − qn(x)∥2µ(dx).

Noter qu’il s’agit d’une variable aléatoire qui dépend de X1, . . . , Xn à tra-
vers l’estimateur qn et que par ailleurs

D(µ, qn) = E
(
∥X − qn(X)∥2|X1, . . . , Xn

)
.

Comme cette quantité est inconnue (elle dépend de la mesure µ inconnue),
on l’approche par son équivalent empirique. Ainsi, on suppose toujours
que E∥X∥2 < ∞ et on désigne par µn la mesure empirique associée à
X1, . . . , Xn, i.e.

µn =
1
n

n

∑
i=1

δXi .

On introduit la distorsion empirique d’un quantifieur quelconque q, elle prend
la forme

D(µn, q) =
∫

Rd
∥x − q(x)∥2µn(dx) =

1
n

n

∑
i=1

∥Xi − q(Xi)∥2.

Dans le cas particulier d’un quantifieur de type PPV, qppv = (c, PV(c))
avec c = (c1, . . . , ck) ∈ Rdk, on obtient

D(µn, qppv) = W(µn, c) =
1
n

n

∑
i=1

min
1≤j≤k

∥Xi − cj∥2.

Pour se doter d’outils qui assurent que la méthode de quantification empi-
rique est performante, on introduit la définition qui suit.

Définition 6. Soit qn un quantifieur empirique. On dit qu’il est consistant si
ED(µ, qn) → D⋆(µ). On dit qu’il est de vitesse (vn)n si ED(µ, qn)− D⋆(µ) =
O(1/vn), avec vn → +∞.
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On aura noté au passage que, puisque D(µ, qn) ≥ D⋆(µ), la propriété
ED(µ, qn) → D⋆(µ) est équivalente à D(µ, qn) → D⋆(µ) dans L1(µ).

Le quantifieur empirique q⋆n le plus naturel est obtenu en minimisant la
distorsion empirique sur tous les quantifieurs PPV. En d’autres termes, on
cherche les centres optimaux c⋆n = (c⋆n,1, . . . , c⋆n,k) tels que

W(µn, c⋆n) = inf
c∈Rdk

W(µn, c). (4.1)

On a donc
q⋆n = (c⋆n, PV(c⋆n)) .

(Observons que c⋆n et donc q⋆n existent en vertu du Théorème 10.)

Un quantifieur empirique qn (d’ordre k) est naturellement associé à une mé-
thode de regroupement (ou clustering) des données X1, . . . , Xn en k classes,
en décidant que l’observation Xi est rangée dans la classe j (1 ≤ j ≤ k) si
qn(Xi) = j.

Pour le quantifieur empirique PPV optimal q⋆n, le j-ème cluster est constitué
des observations Xi telles que ∥Xi − c⋆n,j∥ ≤ ∥Xi − c⋆n,ℓ∥, ∀ℓ = 1, . . . , k.

On parle parfois, en lieu et place de clustering, de classification (ou appren-
tissage) non supervisé, l’adjectif « non supervisé » renvoyant au fait qu’il
n’y a pas d’information annexe apportée par des variables réponses Yi. Le
problème consiste ici à regrouper les données X1, . . . , Xn « à l’aveugle » , de
la façon la plus pertinente possible et sans information supplémentaire.

Algorithme des k-means. En pratique, l’approche (4.1) par minimisation
de la distorsion empirique est difficile à mettre en œuvre, surtout en grande
dimension (problème NP-complet 1). On a alors recours à une technique
approchée, appelée algorithme des k-means. Pour une partition quelconque
P = {A0

1, . . . , A0
k} et un alphabet quelconque C = {c0

1, . . . , c0
k} ⊂ Rd, on

définit q0 = (C , P). On définit ensuite q1 = (C 1, P1) de la manière sui-
vante. On calcule d’abord C 1 = {c1

1, . . . , c1
k} tel que, pour tout j = 1, . . . , k,

c1
j = Argmin

y∈Rd

n

∑
i=1

∥Xi − y∥21Xi∈A0
j
. (4.2)

1. En théorie de la complexité, un problème de décision est NP-complet lorsqu’il est
possible de vérifier une solution en temps polynomial (NP) et tous les problèmes de la
classe NP se ramènent à lui via une réduction polynomiale.
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Il est facile de déduire par un calcul élémentaire que ce minimum est atteint
pour

yj =
∑n

i=1 Xi1Xi∈A0
j

∑n
i=1 1Xi∈A0

j

= c1
j , j = 1, . . . , k. (4.3)

Noter que c1
j est une espérance conditionnelle pour la mesure empirique,

Eµn(X | X ∈ A0
j ). On construit ensuite la partition P1 = (A1

1, . . . , A1
k) qui

est la partition de Voronoï associé à l’alphabet C 1. Par ailleurs, il est facile
maintenant d’attribuer à chaque donnée sa cellule : Xi ∈ A1

j si

min
1≤l≤k

∥Xi − c1
l ∥ = ∥Xi − c1

j ∥, pour i = 1, . . . , k.

On continue cette procedure par récurrence. Soient la partition Pm−1 =
{Am−1

1 , . . . , Am−1
k }, l’alphabet C = {cm−1

1 , . . . , cm−1
k } ⊂ Rd et qm−1 = (C , P)

déjà définis. On construit qm = (C m, Pm), avec C m = {cm
1 , . . . , cm

k } tel que,
pour tout j = 1, . . . , k,

cm
j = Argmin

y∈Rd

n

∑
i=1

∥Xi − y∥21Xi∈Am−1
j

. (4.4)

Ce minimum est atteint pour

yj =
∑n

i=1 Xi1Xi∈Am−1
j

∑n
i=1 1Xi∈Am−1

j

= cm
j , j = 1, . . . , k. (4.5)

Autrement dit cm
j = Eµn(X | X ∈ Am−1

j ). On construit ensuite la partition
Pm = (Am

1 , . . . , Am
k ) qui est la partition de Voronoï associé à l’alphabet C m.

Par ailleurs Xi ∈ Am
j si

min
1≤l≤k

∥Xi − cm
l ∥ = ∥Xi − cm

j ∥, pour i = 1, . . . , k.

L’algorithme s’arrête lorsque plus rien ne bouge, i.e. c(m+1) = c(m).

Remarquons que la distorsion empirique décroit à chaque étape

D(µn, qm−1) =
1
n

n

∑
i=1

∥Xi − qm−1(Xi)∥2 =
1
n

k

∑
j=1

n

∑
i=1

∥Xi − cm−1
j ∥21Xi∈Am−1

j

≥ 1
n

k

∑
j=1

n

∑
i=1

∥Xi − cm
j ∥21Xi∈Am−1

j

= D(µn, q̃m). (4.6)
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où q̃m est le quantificateur avec l’alphabet C m mais avec la partition encore
Pm−1. Ensuite on passe de Pm−1 à la partition de Voronoï Pm associée à
C m et on remarque

D(µn, q̃m) ≥ D(µn, qm)

en utilisant simplement la Proposition 3 valide pour n’importe quelle me-
sure de probabilité µ et en particulier pour µn. Ainsi l’algorithme de k-
means fait décroitre la distorsion empirique :

D(µn, qm−1) ≥ D(µn, qm), m = 1, 2, . . .

Néanmoins, même s’il est assuré que la distorsion empirique décroît entre
deux itérations et que l’algorithme s’arrête au bout d’un nombre d’itéra-
tions fini, rien ne garantit cependant que les centres ainsi définis soient
proches des centres optimaux c⋆n. Il s’agit d’une méthode approchée que
l’on manipulera donc avec prudence. En pratique, il peut arriver que pour
un point de départ c(0) particulier, l’algorithme s’arrête dans un minimum
local et pas global. C’est pourquoi on utilise en général l’algorithme k-
means avec 10 points de départ (aléatoires) et on sélectionne le résultat
donnant la plus faible distorsion.

4.3 Consistance et vitesse

L’outil indispensable pour établir la consistance du quantifieur empirique
PPV optimal défini via (4.1) est la distance de Wasserstein.

Définition 7. Soit ν1 et ν2 des probabilités d’ordre 2 sur Rd. La distance de
Wasserstein ρW entre ν1 et ν2 est définie par

ρW(ν1, ν2) = inf
X∼ν1,Y∼ν2

√
E∥X − Y∥2.

Il s’agit d’une distance usuelle sur les mesures de probabilité. Mentionnons
sans preuve deux de ses propriétés fondamentales :

Propriétés.
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1. Pour ν1, ν2 des probabilités d’ordre 2 sur Rd, il existe un couple de
variables aléatoires (X0, Y0) telles que X0 ∼ ν1, Y0 ∼ ν2 et

ρW(ν1, ν2) =
√

E∥X0 − Y0∥2.

2. Soit (νn)n et ν des probabilités d’ordre 2 sur Rd. On a ρW(νn, ν) → 0
si

νn ⇒ ν et
∫

Rd
∥x∥2νn(dx) →

∫
Rd

∥x∥2ν(dx).

Ici ⇒ signifie la convergence faible (i.e. étroite) de mesures (pour
toute fonction f continue bornée

∫
f dνn →

∫
f dν).

Proposition 4.
ρW(µn, µ) → 0, P − p.s.

Démonstration. On applique la propriété 2 ci-dessus. Remarquons tout d’abord
que

∫
Rd ∥x∥2µn(dx) = 1

n ∑n
i=1 ∥Xi∥2 → EX2 =

∫
Rd ∥x∥2µ(dx), P- p.s. par la

loi des grands nombres. Quant à la convergence faible µn ⇒ µ, P−p.s., on
pourrait penser qu’elle découle également de la loi des grands nombres :
pour toute f : Rd → R continue et bornée, E| f (X)| < ∞, alors

∫
Rd f dµn =

1
n ∑n

i=1 f (Xi(ω)) → E f (X) =
∫

Rd f dµ, p.s.. En effet, l’ensemble A f = {ω :∫
Rd f (x)dµn ̸→

∫
Rd f dµ} est de probabilité P(A f ) = 0 mais cet ensemble

dépend de f . Et il n’est pas garanti que P(
⋃

f continues bornées A f ) = 0.
La preuve de µn ⇒ µ p.s. est beaucoup plus délicate et fait l’objet du théo-
rème qui suit : le Théorème de Varadarajan. L’application de ce théorème
termine la preuve de ρW(µn, µ) → 0 p.s.

Théorème 11 (Varadarajan). µn ⇒ µ, P− p.s.

Démonstration. Pour prouver cette convergence en loi, on utilise le théo-
rème de Portemanteau, qui dit (entre autres) qu’une suite de mesures de
probabilités νn sur Rd converge en loi vers ν si et seulement si pour pour
tout ensemble O ouvert de Rd, on a ν(O) ≤ lim infn→∞ νn(O).

Nous devons donc prouver que pour tout O ouvert dans Rd et tout ω ∈
Ω \N , on a µ(O) ≤ lim infn→∞ µn(O, ω) avec P(N ) = 0 et N est universel
pour tous les ouverts de Rd (i.e. ne dépend pas de l’ouvert O considéré).

67



Chapitre 4 Quantification et clustering

Soit D un ensemble dénombrable dense dans Rd, soit B l’ensemble des
boules de centres dans D et de rayons rationnels. L’ensemble B est dénom-
brable, on note Bi pour i = 1, 2, . . . , les boules de cette ensemble. Par la loi
des grands nombres, pour tout ensemble borélien B ⊂ Rd, il existe NB avec
P(NB) = 0 tel que

lim
n→∞

µn(B, ω) → µ(B), ∀ω ∈ Ω \ NB.

(Ici µn(B, ω) indique que X1(ω), . . . , Xn(ω) sont fixés dans la mesure em-
pirique µn). Prenons

N = ∪k≥1 ∪1≤i1<···<ik NBi1
∩···∩Bik

,

où Bi sont les boules de B. Alors

P(N ) = 0

et pour tout k ≥ 1 et tous 1 ≤ i1 < i2 < · · · < ik,

lim
n→∞

µn(Bi1 ∩ · · · ∩ Bik , ω) → µ(Bi1 ∩ · · · ∩ Bik), ∀ω ∈ Ω \ N .

Pour tout ouvert O, il existe un ensemble dénombrable de boules dans B
tel que O = ∪∞

i=1B(di, ri). En effet, prenons tous les points di ∈ D ∩ O et
tous les rayons ri rationnels tels que B(di, ri) ⊂ O, alors ∪∞

i=1B(di, ri) ⊂ O.
Réciproquement, supposons que x ∈ O. Alors comme O est ouvert, il existe
r rationnel tel que B(x, r) ⊂ O. De plus comme l’ensemble D est dense,
il existe un point d ∈ D ∩ B(x, r/5). Alors B(d, 3r/5) ⊂ B(x, r) ⊂ O et
x ∈ B(d, 3r/5). Donc pour tout point x ∈ O, on obtient x ∈ ∪∞

i=1B(di, ri).

Par le théorème de convergence monotone,

µ(O) = µ(∪∞
i=1B(di, ri)) = lim

ℓ→∞
µ(∪ℓ

i=1B(di, ri)),

donc pour tout ϵ > 0, il existe L ≥ 1 tel que ∀ℓ ≥ L,

µ(∪ℓ
i=1B(di, ri)) ≥ µ(O)− ϵ.

Notons par la suite B(di, ri) = Bi. La formule de Poincaré (ou formule du
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crible) donne

µ(∪ℓ
i=1B(di, ri)) =

ℓ

∑
k=1

(−1)k+1 ∑
1≤i1<···<ik≤ℓ

µ(Bi1 ∩ · · · ∩ Bik)

=
ℓ

∑
k=1

(−1)k+1 ∑
1≤i1<···<ik≤ℓ

lim
n→∞

µn(Bi1 ∩ · · · ∩ Bik , ω)

= lim
n→∞

µn(∪ℓ
i=1Bi, ω),

pour tout ω ∈ Ω \ N . On en déduit puisque ∪ℓ
i=1Bi ⊂ O,

µ(O)− ϵ ≤ lim
n→∞

µn(∪ℓ
i=1Bi, ω) ≤ lim inf

n→∞
µn(O, ω), ∀ω ∈ Ω \ N .

En faisant tendre ϵ > 0 vers 0, on obtient

µ(O) ≤ lim inf
n→∞

µn(O, ω), ∀ω ∈ Ω \ N .

Remarque 1. Le théorème de Varadarajan porte parfois le titre de principe
fondamental de la statistique. En effet, il justifie la méthode d’approcher et
même de « remplacer » la mesure µ inconnue par la mesure empirique µn
calculée à partir de n expériences indépendantes.

Remarque 2. La distance de Wasserstein n’est bien sûr pas la seule distance
qu’on pourrait définir sur l’ensemble des mesures. On pourrait considérer
par exemple la distance en variation totale

dTV(ν1, ν2) = sup
A⊂Rd

|ν1(A)− ν2(A)|.

Mais la convergence de µn vers µ n’est pas assurée dans cette distance. Par
exemple, si la loi µ est sans atomes,

dTV(µn(ω), µ)

≥ |µn({X1(ω)} ∪ · · · ∪ {Xn(ω)}, ω)− µ({X1(ω)} ∪ · · · ∪ {Xn(ω)})|
= |1 − 0| = 1.

Le lien entre distorsion de quantifieurs PPV et distance de Wasserstein est
établi dans la proposition qui suit.
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Proposition 5. Soient ν1 et ν2 des probabilités d’ordre 2 sur Rd. Si q est un
quantifieur PPV, alors∣∣∣D(ν1, q)1/2 − D(ν2, q)1/2

∣∣∣ ≤ ρW(ν1, ν2).

Démonstration. Soit (X0, Y0) tel que X0 ∼ ν1, Y0 ∼ ν2 et

ρW(ν1, ν2) =
√

E∥X0 − Y0∥2.

Si q = (c, PV(c)), alors sa distorsion s’écrit (voir Proposition 3) :

D(ν1, q)1/2 =
√

E min
1≤j≤k

∥X0 − cj∥2

=
√

E
(

min
1≤j≤k

∥X0 − cj∥
)2

≤
√

E
(

min
1≤j≤k

(
∥X0 − Y0∥+ ∥Y0 − cj∥

) )2

=

√
E
(
∥X0 − Y0∥+ min

1≤j≤k
∥Y0 − cj∥

)2

≤
√

E∥X0 − Y0∥2 +
√

E min
1≤j≤k

∥Y0 − cj∥2

(en utilisant l’inégalité de Cauchy-Schwarz)

= ρW(ν1, ν2) + D(ν2, q)1/2.

(En effet pour a, b ≥ 0, on a E(ab) ≤ (Ea2Eb2)1/2 par l’inégalité de Cauchy-
Schwartz, alors E(a + b)2 ≤ Ea2 + Eb2 + 2(Ea2)1/2(Eb2)1/2 = (

√
Ea2 +√

Eb2)2, d’où
√

E(a + b)2 ≤
√

Ea2 +
√

Eb2).

Par symétrie des rôles de ν1, ν2, on a pareillement D(ν2, q)1/2 ≤ ρW(ν1, ν2)+
D(ν1, q)1/2, d’où la proposition.

On considère à partir de maintenant le quantifieur empirique optimal PPV
q⋆n, défini via (4.1) par ses centres c⋆n = (c⋆n,1, . . . , c⋆n,k) :

q⋆n = (c⋆n, PV(c⋆n)) .

Théorème 12. La distorsion D(µ, q⋆n) → D⋆(µ), P-p.s. et ED(µ, q⋆n) → D⋆(µ).
Le quantifieur q⋆n est donc consistant.

70



Chapitre 4 Quantification et clustering

Démonstration. (Rappel : l’ordre k des quantifieurs est fixé et omis dans
les notations). Si q⋆ est un quantifieur optimal PPV pour la loi µ (i.e.
D(µ, q⋆) = infq D(µ, q) = D⋆(µ)), la Proposition 5 nous donne en consi-
dérant le quantifieur empirique q⋆n

0 ≤ D(µ, q⋆n)
1/2 − D⋆(µ)1/2

=
[

D(µ, q⋆n)
1/2 − D(µn, q⋆n)

1/2
]
+
[

D(µn, q⋆n)
1/2 − D(µ, q⋆)1/2

]
≤
[

D(µ, q⋆n)
1/2 − D(µn, q⋆n)

1/2
]
+
[

D(µn, q⋆)1/2 − D(µ, q⋆)1/2
]

≤ 2ρW(µ, µn). (4.7)

En effet, D(µn, q⋆n) ≤ D(µn, q⋆) car q⋆ est un quantifieur PPV et q⋆n est
le quantifieur PPV optimal par rapport à µn. Par ailleurs, la Proposition 5
peut être appliquée deux fois car q⋆n et q⋆ sont tous les deux des quantifieurs
PPV.

Or, ρW(µn, µ) → 0, P-p.s. par le Théorème 4.

Pour prouver la seconde assertion, introduisons M (µ, µn) l’ensemble (aléa-
toire) des probabilités sur Rd × Rd admettant µ et µn comme marginales.
Par définition, le carré de la distance de Wasserstein entre µ et µn s’écrit

ρ2
W(µ, µn) = inf

ν∈M (µ,µn)

∫
Rd×Rd

∥x − y∥2ν(dx, dy).

C’est une variable aléatoire car µn est une mesure aléatoire.

Soit C une constante arbitraire strictement positive et soit A le sous-ensemble
de Rd × Rd défini par

A =
{
(x, y) ∈ Rd × Rd : max (∥x∥, ∥y∥) ≤ C

}
.
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On a, pour tout ν ∈ M (µ, µn),∫
Rd×Rd

∥x − y∥2ν(dx, dy)

=
∫

A
∥x − y∥2ν(dx, dy) +

∫
A c

∥x − y∥2ν(dx, dy)

≤
∫

A
∥x − y∥2ν(dx, dy) + 2

∫
A c

∥x∥2ν(dx, dy) + 2
∫

A c
∥y∥2ν(dx, dy)

(car ∥x − y∥2 ≤ 2∥x∥2 + 2∥y∥2)

≤
∫

A
∥x − y∥2ν(dx, dy)

+ 2
∫

Rd
∥x∥21∥x∥>Cµ(dx) + 2

∫
Rd

∥x∥21∥x∥≤C,∥y∥>Cν(dx, dy)

+ 2
∫

Rd
∥y∥21∥y∥>Cµn(dy) + 2

∫
Rd

∥y∥21∥x∥>C,∥y∥≤Cν(dx, dy)

≤
∫

A
∥x − y∥2ν(dx, dy)

+ 2
∫

Rd
∥x∥21∥x∥>Cµ(dx) + 2C2µn (∥y∥ > C)

+ 2
∫

Rd
∥y∥21∥y∥>Cµn(dy) + 2C2µ (∥x∥ > C) .

Ainsi, en appliquant l’inégalité de Markov, il vient∫
Rd×Rd

∥x − y∥2ν(dx, dy)

≤
∫

A
∥x − y∥2ν(dx, dy)

+ 2
∫

Rd
∥x∥21∥x∥>Cµ(dx) + 2

∫
Rd

∥y∥21∥y∥>Cµn(dy)

+ 2
∫

Rd
∥y∥21∥y∥>Cµn(dy) + 2

∫
Rd

∥x∥21∥x∥>Cµ(dx).

En prenant l’infimum à droite sur M (µ, µn) puis l’espérance des deux cô-
tés, on en conclut que

Eρ2
W(µ, µn) ≤ E inf

ν∈M (µ,µn)

∫
A
∥x − y∥2ν(dx, dy) + 8

∫
Rd

∥x∥21∥x∥>Cµ(dx).

(En effet E
∫

Rd f dµn =
∫

f dµ pour f qui est µ-intégrable).

Pour C > 0 fixé, le premier terme du membre de droite tend vers 0 lorsque
n tend vers l’infini d’après le Théorème 4 et le théorème de convergence
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dominée. En effet

ηn = inf
ν∈M (µ,µn)

∫
A
∥x − y∥2ν(dx, dy)

≤ inf
ν∈M (µ,µn)

∫
Rd

∥x − y∥2ν(dx, dy) = ρ2
W(µn, µ) → 0, P − p.s.

Par ailleurs ηn ≤ 4C2 à cause de la définition de A et du fait que ∥x− y∥2 ≤
2∥x∥2 + 2∥y∥2. Donc Eηn → 0 par convergence dominée.

Puisque
∫

Rd ∥x∥2µ(dx) < ∞, le second terme peut être rendu arbitraire-
ment petit en prenant C suffisamment grand. Au final, Eρ2

W(µ, µn) tend
vers 0. Il reste à voir que le résultat de convergence souhaité, ED(µ, q⋆n) →
D⋆(µ), est alors une conséquence facile de Eρ2

W(µ, µn) → 0 et de l’inégalité
(4.7). En effet, par (4.7)

D(µ, q⋆n) ≤ D⋆(µ) + 4ρ2
W(µ, µn) + 4(D⋆(µ))1/2ρW(µ, µn).

Alors

0 ≤ D(µ, q⋆n)− D⋆(µ) ≤ 4ρ2
W(µ, µn) + 4(D⋆(µ))1/2ρW(µ, µn)

et en prenant l’espérance, puisque

E((D⋆(µ))1/2ρW(µ, µn)) = (D⋆(µ))1/2EρW(µ, µn) ≤ D⋆(µ)(EρW(µ, µn)
2)1/2

tend aussi vers 0 quand n → ∞, on obtient le résultat souhaité.

Analysons maintenant la vitesse de convergence de q⋆n. Pour ce faire, nous
supposerons qu’il existe une constante R ≥ 0 telle que ∥X∥ ≤ R, P-p.s.
Cette hypothèse est parfois appelée contrainte de pic dans le vocabulaire
de la quantification.

Théorème 13. S’il existe une constante R ≥ 0 telle que ∥X∥ ≤ R, P-p.s., alors
pour tout ordre k ≥ 1,

0 ≤ ED(µ, q⋆n)− D⋆
k (µ) ≤

12kR2
√

n
.

Énonçons tout d’abord, sans preuve, un outil fondamental dans l’étude de
la mesure empirique :
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Lemme 7 (Principe de contraction). Soit σ1, . . . , σn des variables aléatoires
i.i.d. de loi de Rademacher, indépendantes de X1, . . . , Xn, et soit F un ensemble
borné de fonctions réelles, définies sur Rd. On a

E sup
f∈F

1
n

n

∑
i=1

σi | f (Xi)| ≤ E sup
f∈F

1
n

n

∑
i=1

σi f (Xi).

Remarques préliminaires.

1. Si ∥X∥ ≤ R, P-p.s, alors les centres optimaux c⋆ sont dans BR :=
B(0, R). En effet, si c ∈ Rd avec ∥c∥ > R et p est la projection sur BR,
alors, par définition de la projection, on a, ∀x ∈ BR,

∥x − c∥2 = ∥x − p(c)∥2 + ∥p(c)− c∥2 − 2⟨x − p(c), c − p(c)⟩
≥ ∥x − p(c)∥2.

On a donc une distorsion plus petite pour des centres dans BR.
2. Si X ∼ µ, on a

W(µ, c) = E min
1≤j≤k

∥X − cj∥2

= E∥X∥2 + E min
1≤j≤k

(
−2⟨X, cj⟩+ ∥cj∥2

)
.

Ces deux observations nous conduisent à la conclusion suivante : plutôt
que de minimiser W(µ, ·) sur Rdk, il suffit donc de minimiser, sur Bk

R,

W̄(µ, c) := E min
1≤j≤k

fcj(X), avec fc(x) = −2⟨x, c⟩+ ∥c∥2.

La même observation est valable en remplaçant µ par µn et en se rappelant
que la distorsion empirique est une espérance par rapport à la mesure
empirique µn, i.e.

W̄(µn, c) :=
1
n

n

∑
i=1

min
1≤j≤k

fcj(Xi).
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Démonstration du Théorème 13. On a

D(µ, q⋆n)− D⋆(µ)

= W(µ, c⋆n)− inf
c∈Bk

R

W(µ, c)

= W̄(µ, c⋆n)− inf
c∈Bk

R

W̄(µ, c)

=
[
W̄(µ, c⋆n)− W̄(µn, c⋆n)

]
+
[

inf
c∈Bk

R

W̄(µn, c)− inf
c∈Bk

R

W̄(µ, c)
]

(par définition de c⋆n)
≤ sup

c∈Bk
R

(W̄(µ, c)− W̄(µn, c)) + sup
c∈Bk

R

(W̄(µn, c)− W̄(µ, c)) .

Dans la suite, nous cherchons à majorer le terme

sup
c∈Bk

R

(W̄(µn, c)− W̄(µ, c)) ,

l’autre terme se bornant de façon similaire. En utilisant un n-échantillon in-
dépendant annexe X′

1, . . . , X′
n et un argument de symétrisation similaire à

celui employé dans la preuve du théorème de Vapnik-Chervonenkis (Théo-
rème 3), il vient

E sup
c∈Bk

R

(W̄(µn, c)− W̄(µ, c))

= E sup
c∈Bk

R

1
n

n

∑
i=1

(
min

1≤j≤k
fcj(Xi)− E min

1≤j≤k
fcj(X)

)
= E sup

c∈Bk
R

1
n

E

[ n

∑
i=1

(
min

1≤j≤k
fcj(Xi)− min

1≤j≤k
fcj(X′

i)
)∣∣X1, . . . , Xn

]
.

Ainsi, en observant que sup E(·) ≤ E sup(·),

E sup
c∈Bk

R

(W̄(µn, c)− W̄(µ, c)) ≤ E sup
c∈Bk

R

1
n

n

∑
i=1

(
min

1≤j≤k
fcj(Xi)− min

1≤j≤k
fcj(X′

i)
)

≤ 2E sup
c∈Bk

R

1
n

n

∑
i=1

σi min
1≤j≤k

fcj(Xi).
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Pour le traitement de ce dernier terme, nous allons procéder par itération
sur l’ordre k des quantifieurs, en nous appuyant sur le principe de contrac-
tion. On note

Sk = E sup
(c1,...,ck)∈Bk

R

1
n

n

∑
i=1

σi min
1≤j≤k

fcj(Xi).

Cas k = 1. Comme ∥X∥ ≤ R :

S1 = E sup
c∈BR

1
n

n

∑
i=1

σi
(
− 2⟨Xi, c⟩+ ∥c∥2)

≤ 2E sup
c∈BR

1
n

n

∑
i=1

σi⟨Xi, c⟩+ E sup
c∈BR

∥c∥2

n

n

∑
i=1

σi

≤ 2E sup
c∈BR

1
n

n

∑
i=1

σi⟨Xi, c⟩+ R2

n
E

∣∣∣∣ n

∑
i=1

σi

∣∣∣∣
≤ 2E sup

c∈BR

1
n

n

∑
i=1

σi⟨Xi, c⟩+ R2
√

n

(par l’inégalité de Cauchy-Schwarz).

Ainsi, en utilisant que pour tout u ∈ BR on a supc∈BR
⟨u, c⟩ = R∥u∥,

S1 ≤ 2E sup
c∈BR

1
n

∣∣∣∣〈 n

∑
i=1

σiXi, c
〉∣∣∣∣+ R2

√
n

=
2R
n

E

∥∥∥∥∥ n

∑
i=1

σiXi

∥∥∥∥∥+ R2
√

n

≤ 2R

√
E∥X∥2

n
+

R2
√

n
(par l’inégalité de Cauchy-Schwarz)

≤ 3R2
√

n
.

Cas k = 2. Comme min(a, b) = a+b
2 − |a−b|

2 , on a

S2 = E sup
(c1,c2)∈B2

R

1
2n

n

∑
i=1

σi
(

fc1(Xi) + fc2(Xi)− | fc1(Xi)− fc2(Xi)|
)

≤ S1 + E sup
(c1,c2)∈B2

R

1
2n

n

∑
i=1

σi
∣∣ fc1(Xi)− fc2(Xi)

∣∣.
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En appliquant le principe de contraction, on obtient

S2 ≤ S1 + E sup
(c1,c2)∈B2

R

1
2n

n

∑
i=1

σi
(

fc1(Xi)− fc2(Xi)
)
≤ 2S1.

Cas k = 3. Comme S2 ≤ 2S1,

S3 ≤ S1 + S2

2
+

S1 + S2

2
≤ 3S1.

En itérant le procédé, on trouve

Sk ≤ kS1 ≤ 3kR2
√

n
.

Finalement,

ED(µ, q⋆n)− D⋆(µ) ≤ 4Sk ≤
12kR2
√

n
,

d’où le théorème.

77



Troisième partie

Statistique paramétrique
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Chapitre 5

Statistique paramétrique
asymptotique
Dans tout le chapitre, (H n, {Pθ}θ∈Θ) désigne un modèle statistique pa-
ramétrique avec H ⊂ Rd et Θ ⊂ Rk. Le paramètre d’intérêt est g(θ) avec
g : Θ → Rp une fonction connue. L’objectif consiste dans un premier temps
à estimer g(θ) à partir de l’observation X = (X1, . . . , Xn) issue du modèle ;
puis dans un second temps à faire des tests d’hypothèse sur le paramètre
inconnu g(θ).

5.1 Rappels sur les estimateurs

Définition 8. Une statistique est une fonction borélienne de l’observation X =
(X1, . . . , Xn). Un estimateur de g(θ) est une statistique qui prend ses valeurs dans
un sur-ensemble de g(Θ).

Dans la suite, Eθ désigne l’espérance sous une loi paramétrée par θ et
VθZ désigne la matrice de variance-covariance (ou la variance si s = 1) de
Z ∈ L2(µθ) sous la loi µθ, i.e. pour une variable aléatoire intégrable Z à
valeurs dans Rs et de loi µθ,

EθZ =
∫

Rs
Z(x)µθ(dx) et VθZ = Eθ (Z − EθZ) (Z − EθZ)⊺

= EθZZ⊺ − (EθZ) (EθZ)⊺ .

Une statistique S(X) est d’ordre q ∈ N si S(X) ∈ Lq(µθ) pour chaque
θ ∈ Θ, i.e.

Eθ ∥S(X)∥q =
∫

H n
∥S(x)∥qµθ(dx) < ∞, ∀θ ∈ Θ.
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Définition 9 (Biais). Soit ĝ un estimateur d’ordre 1. On appelle biais la fonc-
tion θ 7→ Eθ ĝ − g(θ). L’estimateur ĝ est dit sans biais lorsque cette fonction
est nulle, i.e. Eθ ĝ = g(θ), ∀θ ∈ Θ. Il est asymptotiquement sans biais lorsque
limn→+∞ Eθ ĝ = g(θ), ∀θ ∈ Θ.

Exemples. Dans les exemples qui suivent, on se place dans le cadre d’un
n-échantillon X = (X1, . . . , Xn) i.i.d., de loi Pθ = Q⊗n

θ .

1. Supposons que H ⊂ R et que la probabilité Qθ admette un moment
d’ordre 2. La variance empirique S2

n

S2
n =

1
n

n

∑
i=1

(Xi − X̄n)
2 =

1
n

n

∑
i=1

X2
i − (X̄n)

2,

est alors un estimateur biaisé de g(θ) = VθX1. En effet, on a (exercice
facile)

EθS2
n =

n − 1
n

g(θ).

Voilà pourquoi, lorsque n > 1, on considère plutôt l’estimateur

S̃2
n =

n
n − 1

S2
n =

1
n − 1

n

∑
i=1

(Xi − X̄n)
2,

appelé variance empirique corrigée qui, lui, estime sans biais g(θ) =
VθX1. Notons également que la variance empirique S2

n est asympto-
tiquement sans biais.

2. Supposons que chaque Xi suive la loi U ([0, θ]), θ > 0. Dans ce mo-
dèle, l’estimateur θ̂ = 2X̄n obtenu par la méthode des moments (cf ci-
dessous) est sans biais. Il n’en est pas de même pour l’EMV θ̂ = X(n)

(cf ci-dessous), car Eθ θ̂ < θ. On montre d’ailleurs facilement que
Eθ θ̂ = n

n+1 θ.

Maximum de vraisemblance. On suppose dans ce paragraphe que le mo-
dèle (H n, {Pθ}θ∈Θ) est dominé par une mesure σ-finie ν, avec H ⊂ Rd et
Θ ⊂ Rk.

Définition 10. La vraisemblance du modèle (H n, {Pθ}θ∈Θ) est l’application Ln :
H n × Θ → R+ telle que, pour chaque θ ∈ Θ, Ln(·; θ) : H n → R+ est un
élément de la classe d’équivalence de la densité de Pθ par rapport à ν.
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Dans un modèle à échantillonnage i.i.d., l’expression de la vraisemblance
se simplifie.

Proposition 6. Soit L la vraisemblance du modèle (H , {Qθ}θ∈Θ) dominé par la
mesure µ. Si, pour chaque θ ∈ Θ, Pθ = Q⊗n

θ , alors la fonction

Ln : H n × Θ → R+

(x1, . . . , xn, θ) 7→ ∏n
i=1 L(xi; θ)

est la vraisemblance du modèle (H n, {Pθ}θ∈Θ) pour ν = µ⊗n.

Démonstration. Il suffit de remarquer que, pour chaque θ ∈ Θ, l’application

(x1, . . . , xn) 7→
n

∏
i=1

L(xi; θ),

définie sur H n, est une version de la densité de Q⊗n
θ par rapport à ν =

µ⊗n.

Les deux cas les plus classiques en échantillonnage i.i.d. sont ceux où µ est
la mesure de comptage sur H (cas discret) ou la mesure de Lebesgue (cas
continu). On utilise alors souvent la notation Pθ(X1 = x) (cas discret) ou
fθ(x) (cas continu) en lieu et place de L(x; θ), de sorte que

Ln(x1, . . . , xn; θ) =
n

∏
i=1

Pθ(Xi = xi)

pour le cas discret et

Ln(x1, . . . , xn; θ) =
n

∏
i=1

fθ(xi)

pour le cas continu.

Définition 11. Un estimateur du maximum de vraisemblance (EMV) est un es-
timateur θ̂ qui vérifie

θ̂ ∈ Argmax
θ∈Θ

Ln(X1, . . . , Xn; θ).

Remarques.
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1. En pratique, la vraisemblance se maximise en θ à X1, . . . , Xn « fixés »
et l’éventuel EMV s’écrit comme une fonction de X1, . . . , Xn.

2. Ni l’existence, ni l’unicité des EMV ne sont en général acquises, mais
on parle souvent par abus de « l’EMV » au lieu de dire « un EMV ». De
plus, sous réserve d’existence, l’EMV peut ne pas avoir de représen-
tation explicite ; dans ce cas, le recours à une méthode d’optimisation
numérique est nécessaire afin de déterminer sa valeur en l’observa-
tion.

3. Un EMV, noté θ̂, est donc un estimateur du paramètre θ du modèle. Si
le paramètre d’intérêt est g(θ), avec g une fonction borélienne connue
définie sur Θ, on considère l’estimateur g(θ̂) dit estimateur plug-in. Par
abus de langage, g(θ̂) est parfois qualifié d’EMV de g(θ).

4. Lorsque X = (X1, . . . , Xn) est un n-échantillon i.i.d., on préfère par-
fois calculer l’EMV en maximisant la log-vraisemblance 1

log Ln(x1, . . . , xn; θ) =
n

∑
i=1

log L(xi; θ),

pour (x1, . . . , xn) ∈ H n et θ ∈ Θ. L’intérêt pratique est clair, l’étape
de maximisation étant en principe plus facile à mener.

5. Sous certaines conditions de régularité du modèle, l’EMV possède de
bonnes propriétés (existence, unicité, convergence, etc.).

Méthode des moments. Dans le cas particulier où le paramètre d’intérêt
g(θ) est un moment de la loi Qθ ou, par extension, une fonction de plu-
sieurs moments de cette loi, la méthode des moments permet de construire
des estimateurs naturels, en substituant à Qθ la mesure empirique issue de
l’échantillon. Ainsi, si g(θ) = Ψ(g1(θ), . . . , gq(θ)), où gj(θ) = EθΦj(X1) et
Eθ∥Φj(X1)∥ < ∞, la méthode des moments consiste à utiliser l’estimateur

ĝ = Ψ

(
1
n

n

∑
i=1

Φ1(Xi), . . . ,
1
n

n

∑
i=1

Φq(Xi)

)
.

Plus généralement, la méthode des moments propose d’estimer un para-
mètre θ comme la solution (si elle existe) d’un système d’équations

1
n

n

∑
i=1

Φj(Xi) = EθΦj(X), j = 1, . . . , q, (5.1)

1. Tous les logarithmes sont des logarithmes népériens.
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pour un choix fixé de fonctions Φj. Le choix de Φj(x) = xj correspond
à la méthode des moments la plus simple. Lorsque le paramètre θ est k-
dimensionnel, on cherche usuellement à résoudre le système induit par les
k premiers moments de la loi Qθ.

Remarque. Dans le cas particulier où la loi Qθ est à support fini de taille k,
les k premiers moments (théoriques) de cette loi caractérisent entièrement
la distribution.

Avantage : L’estimateur a souvent de bonnes propriétés, obtenues via la
loi des grands nombres ou le théorème central limite. Par ailleurs, pour les
modèles issus de la famille exponentielle de rang plein 2, EMV et estimateur
des moments coïncident.

Inconvénient : Pour utiliser cette méthode, il faut soit pouvoir exprimer
g(θ) comme une fonction des moments de la loi Qθ, ce qui n’est pas tou-
jours possible (ou facile) ; soit être capable de résoudre le système des équa-
tions de moment. De plus, cette approche est en général moins efficace (en
termes de variance asymptotique) que la méthode du maximum de vrai-
semblance.

Exemples.

1. X = (X1, . . . , Xn) i.i.d. de loi commune Poisson P(θ), θ > 0. Ici
encore, θ = EθX1, et l’on choisit donc θ̂ = X̄n. Mais comme θ = VθX1,
on peut aussi prendre θ̂ = S2

n.
2. X = (X1, . . . , Xn) i.i.d., de loi commune U ([0, θ]), θ > 0. Il est fa-

cile de voir que θ = 2EθX1, d’où l’estimateur θ̂ = 2X̄n. Noter que,
pour ce modèle, l’estimateur obtenu par la méthode des moments est
différent de l’EMV.

Risque quadratique et décomposition biais-variance. La proximité entre
l’estimateur et le paramètre d’intérêt peut être évaluée par leur distance
dans L2(Pθ).

Définition 12. Soit ĝ un estimateur d’ordre 2.

1. Pour θ ∈ Θ, le risque quadratique de ĝ sous Pθ est

R(ĝ; θ) = Eθ ∥ĝ − g(θ)∥2 .

2. Le modèle de la famille exponentielle n’est pas détaillé dans ce document
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2. ĝ est dit préférable à l’estimateur ĝ′ d’ordre 2 lorsque

R(ĝ; θ) ≤ R(ĝ′; θ), ∀θ ∈ Θ.

On a la relation fondamentale suivante (dite décomposition « biais-variance ») :

R(ĝ; θ) = ∥Eθ ĝ − g(θ)∥2 + Eθ∥ĝ − Eθ ĝ∥2, ∀θ ∈ Θ. (5.2)

En effet,
R(ĝ; θ) = Eθ ∥ĝ − Eθ ĝ + Eθ ĝ − g(θ)∥2

= Eθ ∥ĝ − Eθ ĝ∥2 + Eθ ∥Eθ ĝ − g(θ)∥2 + 2Eθ < ĝ − Eθ ĝ, Eθ ĝ − g(θ) >

Or, comme dans le produit scalaire le 2ème terme est constant, on obtient :

Eθ < ĝ−Eθ ĝ, Eθ ĝ− g(θ) >=< Eθ(ĝ−Eθ ĝ), Eθ ĝ− g(θ) >=< 0, Eθ ĝ− g(θ) >= 0,

ce qui prouve la décomposition biais-variance.

En particulier, pour p = 1,

R(ĝ; θ) = biais2(θ) + Vθ ĝ.

L’intérêt de la décomposition (5.2) est qu’elle montre que, pour un risque
quadratique donné, abaisser le biais revient à augmenter le terme de va-
riance Eθ∥ĝ − Eθ ĝ∥2, et réciproquement. Il est alors naturel de s’intéresser
aux estimateurs qui minimisent uniformément la variance parmi les esti-
mateurs sans biais de g(θ).

Définition 13 (VUMSB). Un estimateur ĝ d’ordre 2 est de variance uniformé-
ment minimum parmi les estimateurs sans biais (VUMSB) s’il est sans biais et
préférable à tout autre estimateur sans biais d’ordre 2.

L’existence d’un estimateur VUMSB n’est en général pas acquise. Pour
l’instant nous allons néanmoins noter que la variance de tous les estima-
teurs sans biais admet une borne inférieure, la borne de Cramer-Rao (5.5),
que nous allons expliquer dans le paragraphe ci-dessous brièvement, sans
préciser de bonnes hypothèses et seulement dans le cas Θ ⊂ R (k = 1).
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Information de Fisher et borne de Cramer-Rao. On suppose à nouveau
que le modèle (H n, {Pθ}θ∈Θ) est un modèle statistique dominé par une
mesure σ-finie ν, avec H ⊂ Rd et Θ ⊂ Rk. Notons

In(θ) = Eθ

[( ∂

∂θ
log Ln(X, θ)

)2]
.

Cette quantité s’appelle l’information de Fisher.

Notons que sous de « bonnes » hypothèses d’interversion entre dérivées et
intégrales et en supposant que le support S de la fonction (x1, . . . , xn) 7→
Ln(x1, . . . , xn, θ) est le même pour tout θ ∈ Θ, on obtient :

Eθ

[ ∂

∂θ
log Ln(X, θ)

]
=
∫ ∂

∂θ Ln(x1, . . . , xn, θ)

Ln(x1, . . . , xn, θ)
Ln(x1, . . . , xn, θ)dν

=
∫

∂

∂θ
Ln(x1, . . . , xn, θ)1L(x1,...,xn,θ)>0dν

=
∫

∂

∂θ
Ln(x1, . . . , xn, θ)1S(x1, . . . , xn)dν

=
∂

∂θ

∫
S

Ln(x1, . . . , xn, θ)dν

=
∂

∂θ
1 = 0. (5.3)

Par conséquent, sous ces hypothèses, l’information de Fisher prend la forme
équivalente

In(θ) = Vθ

( ∂

∂θ
log Ln(X, θ)

)
. (5.4)

Soit ĝ = h(X) un estimateur sans biais de g(θ). Toujours sous de bonnes
hypothèses d’interversion entre dérivées et intégrales, l’inégalité suivante
a lieu :

Vθ(ĝ) ≥ (g′(θ))2

In(θ)
. (5.5)

C’est la borne de Cramer-Rao.

Pour la prouver, on remarque que h(X1, . . . , Xn) étant sans biais, on a

g(θ) =
∫

S
h(x1, . . . , xn)Ln(x1, . . . , xn, θ)dν pour tout θ ∈ Θ.
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On calcule :

g′(θ) =
∂

∂θ

∫
S

h(x1, . . . , xn)Ln(x1, . . . , xn, θ)dν

=
∫

S
h(x1, . . . , xn)

( ∂

∂θ
Ln(x1, . . . , xn, θ)

)
dν

=
∫

S
h(x1, . . . , xn)

( ∂

∂θ
log Ln(x1, . . . , xn, θ)

)
Ln(x1, . . . , xn, θ)dν

= Eθ

(
h(X)

( ∂

∂θ
log Ln(X, θ)

))
.

En tenant compte de la remarque (5.3)

g′(θ) = Eθ

(
h(X)

[( ∂

∂θ
log Ln(X, θ)

)
− Eθ

( ∂

∂θ
log Ln(X, θ)

)])
Et comme Eθh(X) est constante, on déduit finalement

g′(θ) = Eθ

([
h(X)− Eθh(X)

][( ∂

∂θ
log Ln(X, θ)

)
− Eθ

( ∂

∂θ
log Ln(X, θ)

)])
.

L’inégalité de Chauchy-Swartz conduit alors à

|g′(θ)| ≤
√

Vθ

( ∂

∂θ
log Ln(X, θ)

)
×
√

Vθh(X)

ce qui prouve la borne (5.5).

Exemple. X = (X1, . . . , Xn) i.i.d., de loi commune B(θ), θ ∈ (0, 1). L’esti-
mateur X̄n de θ est sans biais, et sa variance vaut

VθX̄n =
VθX1

n
=

θ(1 − θ)

n
,

car les variables aléatoires X1, . . . , Xn sont indépendantes et de même loi
B(θ). Par suite, d’après la décomposition biais-variance (5.2) :

R(X̄n; θ) =
θ(1 − θ)

n
.

En augmentant n, l’estimateur X̄n gagne donc en précision. Ce n’est pas
le cas pour l’estimateur X1, de risque quadratique R(X1; θ) = θ(1 − θ).
Comme on pouvait s’y attendre, X̄n est donc préférable à X1.
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Par ailleurs, calculons l’information de Fisher. On peut commencer par
remarquer que dans un modèle i.i.d., partant de (5.4), on obtient

In(θ) = Vθ

( ∂

∂θ
log

n

∏
i=1

L(Xi, θ)
)
= Vθ

( n

∑
i=1

∂

∂θ
log L(Xi, θ)

)
= nVθ

( ∂

∂θ
log L(X1, θ)

)
,

que l’on notera également nI(θ). Dans le cas de variables de loi de Ber-
noulli, on obtient

log L(X1, θ) = X1 log θ + (1 − X1) log(1 − θ)

et

In(θ) = Vθ

( ∂

∂θ
log Ln(X, θ)

)
= nVθ

(X1

θ
− 1 − X1

1 − θ

)
= nVθ

X1

θ(1 − θ)

= n
θ(1 − θ)

θ2(1 − θ)2 =
n

θ(1 − θ)
.

Comme g′(θ) = 1, nous voyons que

VθX̄n =
g′(θ)
In(θ)

.

La borne de Rao-Cramer est atteinte, donc X̄n est VUMSB.

Exemple. X = (X1, . . . , Xn) de loi commune de Poisson P(θ). Nous avons
déjà présenté deux estimateurs sans biais pour g(θ) = θ, à savoir X̄n et
S̃2

n. Calculons l’information de Fisher In(θ) = nI(θ). En se servant de la
remarque (5.3) pour n = 1 :

Vθ

( ∂

∂θ
log L(X1, θ)

)
= Eθ

( ∂

∂θ
log L(X1, θ)

)2

= Eθ

[( ∂

∂θ
(−θ + X1 log θ − log X1!

)2]
= Eθ

[(X1

θ
− 1
)2]

=
1
θ2 VθX1 =

1
θ

.

Alors l’information de Fisher In(θ) =
n
θ . Notons que VX̄n = 1

n VθX1 = θ
n .

Comme g(θ) = θ, nous pouvons conclure que

VθX̄n =
g′(θ)
In(θ)

.

La borne de Rao-Cramer est atteinte, donc X̄n est un estimateur VUMSB.
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5.2 M- et Z-estimateurs

De façon générale, les estimateurs sont souvent construits comme maximas
d’un critère empirique, ou de façon souvent équivalente, comme « zeros »
(solutions d’une équation) d’un critère empirique (la dérivée du précédent).

Définition 14. Dans un modèle (H n, {Pθ}θ∈Θ), un M-estimateur a la forme
générale 3

θ̂M ∈ Argmax
θ∈Θ

1
n

n

∑
i=1

mθ(Xi), (5.6)

où pour tout θ ∈ Θ, x 7→ mθ(x) est une fonction réelle connue (on peut autoriser
à valeurs dans R̄ = [−∞,+∞]).

Lorsque le critère est différentiable, on peut également chercher les points
critiques, d’où la définition suivante d’un Z-estimateur.

Définition 15. Dans un modèle (H n, {Pθ}θ∈Θ), un Z-estimateur noté θ̂Z est
obtenu comme solution de l’équation

1
n

n

∑
i=1

ψθ(Xi) = 0,

où pour tout θ ∈ Θ, x 7→ ψθ(x) est une fonction vectorielle connue.

L’étude des M- et Z- estimateurs se fait dans un cadre asymptotique, lorsque
la taille d’échantillon grandit. Il est donc naturel d’élargir les définitions au
cas où les conditions ci-dessus sont réalisées de façon approchée, i.e. à o(1)
près qui tend vers 0 lorsque la taille d’échantillon augmente. Noter que
les restes sont (en général) des variables aléatoires ; il faut donc préciser le
type de convergence (généralement, en probabilités, ce que l’on note par-
fois oP(1)).

Les estimateurs de moment, sont en fait des Z-estimateurs. En effet, la
caractérisation donnée dans (5.1) indique que estimateurs de moment sont
des Z-estimateurs pour ψθ(x) = Φ(x)− EθΦ(X) avec Φ = (Φ1, . . . , Φq).

3. La notation Argmax désigne l’ensemble des maximas (supremums) d’une fonction.

88



Chapitre 5 Statistique paramétrique asymptotique

Dans un modèle à échantillonnage i.i.d., un estimateur du maximum de
vraisemblance est en fait un M-estimateur pour la fonction mθ = log L(·; θ)
où L est la vraisemblance du modèle (H , Qθ). Par ailleurs, si θ 7→ log L(·; θ)
est différentiable, alors l’EMV est souvent défini comme Z-estimateur avec
ψθ = ∇θ log L(·; θ). En fait, les EMV ne sont des M-estimateurs que dans
les modèles à échantillonnage i.i.d.. Cependant, dans les modèles qui ne
sont pas à échantillonnage i.i.d., on peut construire des estimateurs du
maximum de pseudo-vraisemblance, qui sont des M-estimateurs. Même si
le modèle n’est pas à échantillonnage i.i.d., ces estimateurs ont parfois de
bonnes propriétés.

Un exemple plus exotique est donné par la médiane empirique.

Exemple. Supposons que H ⊂ R (i.e. d = 1) et que le paramètre θ est la
médiane de la loi Qθ, i.e. Qθ(X ≤ θ) ≥ 1/2 et Qθ(X ≥ θ) ≥ 1/2. On se
place dans le cas d’une loi Qθ sans atomes. On constate que la médiane
empirique, définie par

inf
{

t ∈ R;
1
n

n

∑
i=1

1Xi≤t ≥
1
2

}
est un Z-estimateur (approché) de θ avec ψθ(x) = sign(x − θ) = 1x>θ −
1x<θ. En effet, le critère vaut alors

1
n

n

∑
i=1

ψθ(Xi) =
2
n

∣∣∣{i ∈ {1, . . . , n}; Xi > θ
}∣∣∣− 1− 1

n

∣∣∣{i ∈ {1, . . . , n}; Xi = θ
}∣∣∣.

Comme la loi est sans atomes, le dernier terme est d’espérance nulle et par
la loi des grands nombres, il tend Pθ-ps vers 0. La médiane empirique θ̂med

vérifie∣∣∣{i ∈ {1, . . . , n}; Xi > θ̂med
}∣∣∣ ≥ n

2
et
∣∣∣{i ∈ {1, . . . , n}; Xi < θ̂med

}∣∣∣ ≥ n
2

c’est donc un zéro approché du critère.

On peut généraliser cet exemple au p-ième quantile empirique, p ∈ (0, 1),
qui est un Z-estimateur approché pour la fonction ψθ(x) = 1x≤θ − p.

5.3 Théorème de Wald

L’observation X = (X1, . . . , Xn) contient de plus en plus d’information sur
la vraie valeur du paramètre à mesure que sa taille n croît. De ce fait, on est
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amené à s’intéresser aux propriétés asymptotiques des estimateurs. Dans la
suite, sauf mention explicite du contraire, toute propriété de convergence
sera entendue pour une taille d’échantillon n qui tend vers l’infini.

Définition 16. L’estimateur ĝ est dit consistant lorsque

ĝ
Pθ−→ g(θ), ∀θ ∈ Θ.

Exemple. L’estimateur X̄n de g(θ) = EθX1 construit avec un n-échantillon
i.i.d. X = (X1, . . . , Xn) ∈ Rdn satisfaisant Eθ∥X1∥ < ∞ est consistant car,
d’après la loi faible des grands nombres :

X̄n
Pθ−→EθX1, ∀θ ∈ Θ.

Pour d = 1, il en est de même de la variance empirique dès que EθX2
1 < ∞

puisque, toujours par la loi faible des grands nombres,

S2
n

Pθ−→VθX1, ∀θ ∈ Θ.

Remarque. Consistance et absence de biais asymptotique ne sont pas les
mêmes notions. Par exemple, pour se convaincre qu’un estimateur consis-
tant n’est pas nécessairement asymptotiquement sans biais, considérons le
modèle statistique (Rn, {N (θ, 1)⊗n}θ∈(0,1)) et l’estimateur θ̂ de θ issu de
X = (X1, . . . , Xn) ∼ Pθ = N (θ, 1)⊗n défini par

θ̂ = X̄n +
1

Φ(−
√

n)
1{X̄n≤0},

où Φ désigne la fonction de répartition de la loi N (0, 1). L’estimateur X̄n
est consistant d’après la loi faible des grands nombres. En effet, comme
θ > 0, pour chaque ε > 0 :

lim
n→+∞

P

(
1

Φ(−
√

n)
1{X̄n≤0} > ε

)
= lim

n→+∞
P(X̄n ≤ 0) = 0.

On en déduit la consistance de θ̂. Or, comme X̄n suit la loi N (θ, 1/n) et
θ ≤ 1 :

P(X̄n ≤ 0) =
1√

2π × 1
n

∫ 0

−∞
exp

(
− (x − θ)2

2
n

)
dx

=
1√
2π

∫ −θ
√

n

−∞
e−t2/2dt = Φ(−θ

√
n)

≥ Φ(−
√

n).
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En conséquence,

Eθ θ̂ = EθX̄n +
1

Φ(−
√

n)
Pθ(X̄n ≤ 0) ≥ θ + 1,

donc θ̂ est biaisé, et même asymptotiquement biaisé.

On se place à présent dans le cas d’un n-échantillon X = (X1, . . . , Xn) i.i.d.
Le théorème de Wald est le résultat classique qui donne la consistance des
M-estimateurs (5.6). Historiquement, Wald a prouvé en 1949 la consistance
du maximum de vraisemblance par cette méthode. Notez qu’il en découle
aussi la consistance des Z-estimateurs en remarquant que ce dernier est
un M-estimateur pour mθ = −∥ψθ∥. Nous l’énonçons ici dans une forme
simplifiée et renvoyons au livre de van der Vaart pour des hypothèses plus
générales.

Théorème 14 (Wald). On suppose que
a) pour tout x, θ 7→ mθ(x) est continue ;
b) pour toute boule ouverte U ⊂ Θ assez petite, E supθ′∈U mθ′(X1) < +∞ ;
c) l’espace Θ est compact.

Alors l’estimateur θ̂M défini par (5.6) converge en probabilité vers l’ensemble des
maxima de θ 7→ Emθ(X1).

Démonstration. On note Θ0 = Argmaxθ∈Θ Emθ(X1) l’ensemble des maxima
et on suppose que cet ensemble est non vide (sinon il n’y a rien à prouver).

Fixons θ ∈ Θ et (Uj)j≥1 une suite de boules ouvertes autour de θ qui
décroît vers {θ}. La suite (supθ′∈Uj

mθ′(x))j≥1 est une suite décroissante,
minorée par mθ(x) et d’après a) elle converge vers mθ(x). D’après b), le
théorème de convergence monotone s’applique et donne la convergence de
E supθ′∈Uj

mθ′(X1) vers Emθ(X1).

Supposons que θ /∈ Θ0, i.e. Emθ(X1) < supθ′∈Θ Emθ′(X1). D’après le résul-
tat de convergence qui précède, il existe une boule ouverte Uθ autour de
θ telle que E supθ′∈Uθ

mθ′(X1) < supθ′∈Θ Emθ′(X1). Fixons ε > 0. Comme
l’ensemble Bε = {θ ∈ Θ; d(θ, Θ0) ≥ ε} est compact et recouvert par l’union
des boules Uθ pour θ ∈ Bε, on peut extraire un sous-recouvrement fini
Uθ1 , . . . , Uθr , d’où il vient

sup
θ∈Bε

1
n

n

∑
i=1

mθ(Xi) ≤ sup
θ∈Bε

1
n

n

∑
i=1

sup
θ′∈Uθ

mθ′(Xi) ≤ max
1≤j≤r

1
n

n

∑
i=1

sup
θ′∈Uθj

mθ′(Xi).

91



Chapitre 5 Statistique paramétrique asymptotique

Par la loi des grands nombres (qui s’applique sous l’hypothèse b)), le terme
de droite converge P-presque sûrement vers

max
1≤j≤r

E sup
θ′∈Uθj

mθ′(X1) < sup
θ′∈Θ

Emθ′(X1) = Emθ0(X1),

pour tout θ0 ∈ Θ0. Ainsi, si θ̂M ∈ Bε, alors

1
n

n

∑
i=1

mθ̂M(Xi) ≤ sup
θ∈Bε

1
n

n

∑
i=1

mθ(Xi) < Emθ0(X1) =
1
n

n

∑
i=1

mθ0(Xi) + Rn,

où

Rn = Emθ0(X1)−
1
n

n

∑
i=1

mθ0(Xi)

tend P-ps vers 0 en utilisant à nouveau la loi des grands nombres (cette
fois sur mθ0 au lieu du sup). Ainsi,

{θ̂M ∈ Bε} ⊂
{ 1

n

n

∑
i=1

mθ̂M(Xi) ≤ Rn + sup
θ∈Θ

1
n

n

∑
i=1

mθ(Xi)
}
= {Rn ≥ 0},

par définition de θ̂M. La probabilité de cet évènement tend vers 0, ce qui
termine la preuve.

Remarque : Dans le cas du maximum de vraisemblance d’un n-échantillon
X = (X1, . . . , Xn) i.i.d., on a mθ = log L(·; θ) et lorsque le modèle est iden-
tifiable, l’ensemble des maxima Θ0 de la fonction θ 7→ E log L(X1; θ) est
réduit au « vrai » paramètre. En effet, notons θ⋆ le paramètre de la loi de
X, i.e. on travaille sous E = Eθ⋆ . Par ailleurs, supposons pour simplifier
les notations que la loi commune des Xi a la densité fθ⋆ (par rapport à une
mesure dominante µ). Alors

ℓ(θ) := E log L(X1; θ) =
∫

log fθ(x) fθ⋆(x)µ(dx)

et par ailleurs

ℓ(θ)− ℓ(θ⋆) =
∫

log
fθ(x)
fθ⋆(x)

fθ⋆(x)µ(dx)

≤ log
∫ fθ(x)

fθ⋆(x)
fθ⋆(x)µ(dx) = 0,

d’après l’inégalité de Jensen et car fθ est une densité. De plus, l’inégalité
ci-dessus est stricte, sauf si fθ = fθ⋆ presque sûrement. Dans un modèle
identifiable, on obtient donc ℓ(θ) ≤ ℓ(θ⋆) avec égalité seulement en θ = θ⋆.
La consistance de l’EMV est donc une conséquence du théorème de Wald.
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5.4 Vitesse de convergence et loi limite

La consistance ne doit être vue que comme une propriété minimale que
doit satisfaire un estimateur. Elle ne permet cependant pas de préciser l’er-
reur commise, d’où la définition qui suit.

Définition 17. Soit (vn)n≥1 une suite de réels positifs telle que vn → +∞. L’es-
timateur ĝ est dit de vitesse vn si, pour chaque θ ∈ Θ ⊂ Rk, il existe une loi ℓ(θ)
sur Rp différente de la loi de Dirac en 0, appelée loi limite de ĝ, telle que

vn (ĝ − g(θ))
L(Pθ)−→ ℓ(θ).

Si toutes les lois ℓ(θ) sont gaussiennes, ĝ est dit asymptotiquement normal.

La qualité d’un estimateur est ainsi évaluée sur sa vitesse car il est alors
d’autant plus proche de g(θ) qu’elle est rapide, mais aussi sur la variance
de la loi limite, qui doit idéalement être faible afin que l’estimateur se
concentre sur le paramètre d’intérêt.

Exemples.

1. X = (X1, . . . , Xn) i.i.d., de loi commune B(θ), θ ∈ (0, 1). L’estimateur
θ̂ = X̄n de θ est consistant. Il est aussi asymptotiquement normal de
vitesse

√
n car, pour chaque θ ∈ (0, 1) :

√
n (X̄n − θ)

L(Pθ)−→ N (0, θ(1 − θ)) ,

d’après le théorème central limite. Noter que la variance de la loi
limite prend ses valeurs les plus faibles lorsque θ est proche de 0 ou
de 1 et ses valeurs les plus grandes lorsque θ est proche de 1/2. De ce
fait, l’estimation de θ par X̄n est d’autant meilleure que θ est proche
de 0 ou de 1 car la loi limite de l’estimateur X̄n est alors très peu
dispersée.

2. X = (X1, . . . , Xn) i.i.d., de loi commune P(θ), θ > 0. Ici encore,
l’estimateur θ̂ = X̄n est consistant et asymptotiquement normal de
vitesse

√
n, car

√
n (X̄n − θ)

L(Pθ)−→ N (0, θ),

toujours d’après le théorème central limite.
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3. X = (X1, . . . , Xn) i.i.d., de loi commune U ([0, θ]), θ > 0. Il est facile
de voir (exercice) que l’EMV θ̂ = X(n) est consistant et de vitesse n,
car

n(X(n) − θ)
L(Pθ)−→ Z,

où −Z ∼ E (1/θ). (Suggestion : calculer la fonction de répartition
de n(X(n) − θ). ) De ce point de vue, il est plus performant (malgré
son caractère biaisé) que l’estimateur 2X̄n obtenu par la méthode des
moments, qui ne converge qu’à la vitesse

√
n.

Pour fixer les idées, on suppose dans la suite que l’estimateur θ̂ de θ est de
vitesse vn, i.e.

vn(θ̂ − θ)
L(Pθ)−→ ℓ(θ), ∀θ ∈ Θ, (5.7)

avec ℓ(θ) une loi sur Rk différente de la mesure de Dirac en 0 et vn → +∞.

La loi de l’erreur renormalisée vn(θ̂ − θ) est proche de la loi ℓ(θ) pour les
grandes valeurs de n. Or, ℓ(θ) est inconnu car θ est inconnu, donc comment
peut-on préciser cette erreur d’approximation ? De plus, comment exploiter
cette propriété asymptotique lorsque le paramètre d’intérêt est g(θ) ? Sous
réserve d’hypothèses supplémentaires, nous allons examiner de quelle ma-
nière il est possible d’apporter des réponses à ces questions. Commençons
au préalable par énoncer le lemme très utile suivant dont la preuve, facile,
(passant par les fonctions caractéristiques) est laissée à la lectrice.

Lemme 8 (Lemme de Slutsky). Soit (Zn)n≥1 et (Yn)n≥1 des suites de variables
aléatoires à valeurs dans Rk et Rq telles que (Zn)n≥1 converge en loi vers une
variable aléatoire Z et (Yn)n≥1 converge en loi vers une constante y ∈ Rq. Alors,
la suite des couples ((Zn, Yn))n≥1 converge en loi vers le couple (Z, y).

Le plus souvent, on applique à cette convergence jointe (Zn, Yn)−→L(Pθ)(Z, y)
une fonction continue h (somme, multiplication, etc.) et l’on en tire que
h(Zn, Yn)−→L(Pθ) h(Z, y).

On notera en particulier que la convergence (5.7) implique que θ̂ tend vers θ

en probabilité. En effet, comme v−1
n → 0 lorsque n → ∞, alors par le lemme

de Slutsky : (v−1
n , vn(θ̂ − θ))−→L(Pθ)(0, ℓ(θ)), donc : v−1

n × vn(θ̂ − θ) =

(θ̂ − θ)
L→ 0 × ℓ(θ) = 0. Donc θ̂ − θ → 0 en loi et par conséquent aussi en

probabilité.
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Pour éviter tout malentendu, un rappel élémentaire : la convergence en
probabilité implique toujours la convergence en loi. La convergence en loi
de manière générale n’implique pas la convergence en probabilité. Cepen-
dant, la convergence en loi vers une constante implique la convergence en
probabilité.

Estimation de la variance limite - cas de θ. Supposons qu’il existe une
fonction connue σ : Θ → R⋆ et une loi connue τ sur Rk telles que pour
chaque θ ∈ Θ, ℓ(θ) = σ(θ)τ. Pourvu que l’on dispose d’un estimateur
consistant σ̂ de σ(θ), on déduit du lemme de Slutsky que(

vn(θ̂ − θ), σ̂
)L(Pθ)−→ (σ(θ)W, σ(θ)) , ∀θ ∈ Θ,

où W est une variable aléatoire de loi τ. Comme la convergence en loi est
préservée par la composition des fonctions continues,

vn

σ̂
(θ̂ − θ)

L(Pθ)−→ W, ∀θ ∈ Θ.

Ainsi, la loi de l’erreur renormalisée (vn/σ̂)(θ̂ − θ) est proche de celle de τ

pour les grandes valeurs de n. Cette dernière ne dépend plus de θ inconnu.

Exemple. X = (X1, . . . , Xn) i.i.d., de loi commune B(θ), θ ∈ (0, 1). Le théo-
rème central limite donne

√
n(X̄n − θ)

L(Pθ)−→ N (0, θ(1 − θ)) , ∀θ ∈ (0, 1).

De plus,
√

X̄n(1 − X̄n) est un estimateur consistant de
√

θ(1 − θ) d’après
la loi des grands nombres. La loi asymptotique de l’erreur renormalisée est
donc N (0, 1), car√

n
X̄n(1 − X̄n)

(X̄n − θ)
L(Pθ)−→ N (0, 1), ∀θ ∈ (0, 1).

Ce résultat peut alors être exploité pour encadrer le paramètre inconnu θ.

Vitesse de convergence de g(θ). Revenons au problème plus général de
l’estimation du paramètre g(θ) ∈ Rp. Comme l’indique le résultat qui suit,
le calcul de la vitesse de l’estimateur g(θ̂) est immédiat, sous réserve que g
possède les propriétés analytiques adéquates.
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Théorème 15 (δ-méthode). Soit (vn)n≥1 une suite de réels qui tend vers +∞,
z ∈ Rk et (Zn)n≥1 une suite de variables aléatoires à valeurs dans Rk telle que
vn(Zn − z) converge en loi vers une loi ℓ sur Rk. Si g : Rk → Rp est de classe
C 1, de matrice jacobienne Jg alors vn(g(Zn) − g(z)) converge en loi vers la loi
Jg(z)ℓ sur Rp.

Ainsi, si la fonction g est de classe C 1, on a, pour tout θ ∈ Θ,

vn
(

g(θ̂)− g(θ)
)L(Pθ)−→ Jg(θ)ℓ(θ),

Jg(θ) désignant la matrice jacobienne de g évaluée en θ. De ce fait, g(θ̂) est,
comme θ̂, un estimateur de vitesse vn dès que la loi Jg(θ)ℓ(θ) est différente
de la loi de Dirac en 0.

Comme dans la partie précédente, on peut préciser l’erreur commise en
approchant g(θ) par g(θ̂) au moins lorsqu’il existe une fonction σ : Θ → R⋆

et une loi τ sur Rk telles que, pour chaque θ ∈ Θ, ℓ(θ) = σ(θ)τ. En effet, si
Jg(θ) est une matrice carrée (donc k = p) inversible pour chaque θ ∈ Θ et σ̂

est un estimateur consistant de σ(θ), on déduit du lemme de Slutsky que

vn

σ̂
Jg(θ̂)

−1 (g(θ̂)− g(θ)
)L(Pθ)−→ τ, ∀θ ∈ Θ,

car, g étant de classe C 1, Jg(θ̂) est un estimateur consistant de Jg(θ). La
loi de l’erreur renormalisée (vn/σ̂)Jg(θ̂)−1(g(θ̂)− g(θ)) est donc proche de
celle de τ pour les grandes valeurs de n.

Remarque : Si k ̸= p, on peut aussi se demander si la loi Jg(θ)ℓ(θ) sur Rp

s’écrit sous la forme σ(θ)τ′ où τ′ est une loi sur Rp indépendant de θ et
appliquer Slutsky.

Exemple. X = (X1, . . . , Xn) i.i.d., de loi commune B(θ), θ ∈ (0, 1) et θ ̸=
1/2. Si g(θ) = θ(1 − θ) est le paramètre d’intérêt, la méthode des moments
nous conduit à considérer l’estimateur g(X̄n). Le théorème central limite et
la δ-méthode donnent alors
√

n (g(X̄n)− g(θ))
L(Pθ)−→ (1− 2θ)N (0, θ(1 − θ))

L(Pθ)
= N

(
0, θ(1 − θ)(1 − 2θ)2

)
,

pour tout θ ∈ (0, 1). Puis, la loi des grands nombres et le lemme de Slutsky
montrent que√

n
X̄n(1 − X̄n)(1 − 2X̄n)2 (g(X̄n)− g(θ))

L(Pθ)−→ N (0, 1), ∀θ ∈ (0, 1) \ {1/2}.
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Remarque. L’utilisation de la δ-méthode ne se limite pas à l’obtention de
lois limites pour les estimateurs de g(θ). Pour s’en convaincre, considérons
un n-échantillon X = (X1, . . . , Xn) i.i.d., de loi commune P(θ), θ > 0. Dans
ce contexte, la variance empirique θ̂ = S2

n = 1
n ∑n

i=1 X2
i − (X̄n)2 est un esti-

mateur consistant de θ. Le théorème central limite multivarié (appliqué au
couple de variables aléatoires ( 1

n ∑n
i=1 X2

i , X̄n)) et la δ-méthode (appliquée
avec la fonction g(x, y) = x − y2) conduisent alors à

√
n(θ̂ − θ)

L(Pθ)−→ N (0, θ + 2θ2), ∀θ > 0.

En effet
√

n
(

1
n ∑n

i=1 X2
i − EθX2

1, 1
n ∑n

i=1 Xi − EθX1

)
converge en loi vers

N2(0, B) la loi gaussienne dans R2 centrée, de matrice de variance-covariance
B avec b11 = VX2

1, b22 = VX1, b12 = b21 = cov(X2
1, X1). D’après la δ-

méthode appliqué avec g(x, y) = x − y2, on a

√
n
( 1

n

n

∑
i=1

X2
i −

( 1
n

n

∑
i=1

Xi

)2
− (EθX2

1 − (EθX1)
2)
)

converge vers le produit de la matrice ligne ( ∂g
∂x (EθX2

1, EθX1),
∂g
∂y (EθX2

1, EθX1))

et du vecteur gaussien colonne ci dessus. C’est donc le produit du vec-
teur ligne (1,−2EθX1) et du vecteur colonne gaussien (N1, N2) centré de
matrice de variance-covariance B. La loi de ce produit est celle d’une va-
riable aléatoire gaussienne centrée dont la variance est b1,1 + 4(EθX1)

2b2,2 −
4(EθX1)b1,2. Il reste à substituer les moments de la loi de Poisson pour ob-
tenir que cette variance vaut θ + 2θ2.

Démonstration du Théorème 15. Notons Z une variable aléatoire de loi ℓ sur
Rk et ψ la matrice (de taille p × k) définie pour tout y ∈ Rk par

ψ(y) =
∫ 1

0
Jg (z + u(y − z))du.

La formule de Taylor avec reste intégral nous donne, pour tout y ∈ Rk :

g(y)− g(z) = ψ(y)(y − z).

En effet, en notant g = (g1, . . . , gp) et ψi la i-ème ligne de la matrice ψ,

ψi(y)(y − z) =
∫ 1

0

k

∑
j=1

∂gi

∂xj
(z1 + u(y1 − z1), . . . , zk + u(yk − zk))(yj − zj)du

=
∫ 1

0

∂(u 7→ gi(z + u(y − z))
∂u

du = gi(y)− gi(z), i = 1, . . . , p.
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Donc
vn(g(Zn)− g(z)) = vnψ(Zn)(Zn − z). (5.8)

Dans cette égalité (5.8), vn(Zn − z) converge en loi vers ℓ par l’énoncé. Il
reste à prouver que ψ(Zn) converge en loi vers la matrice constante Jg(z).

Tout d’abord, le vecteur (1/vn, vn(Zn − Z)) converge en loi vers le couple
(0, ℓ) par le lemme de Slutsky. Alors, la fonction produit étant continue,
Zn − z = (1/vn)× vn(Zn − z) converge vers 0 en loi, i.e. (puisque z est une
constante), Zn converge en loi vers z.

Par ailleurs, l’élément (i, j) de la matrice ψ est la fonction y →
∫ 1

0
∂gi

∂xj
(z +

u(y− z))du, qui est continue au point y = z par le théorème de convergence

dominée. En effet, g étant de classe C 1, les fonctions y → ∂gi

∂xj
(z + u(y − z))

sont continues et bornées dans une boule fermée au voisinage de z.

On en déduit que tous les éléments de la matrice ψ(Zn) convergent en loi
vers ceux de la matrice ψ(z) = Jg(z).

Finalement dans (5.8), ψ(Zn) converge en loi vers la matrice constante Jg(z)
et vn(Zn − z) converge en loi vers ℓ. En appliquant encore une fois le lemme
de Slutsky, on déduit que la partie droite de (5.8) converge en loi vers
Jg(z)ℓ.

5.5 Tests asymptotiques

Dans cette section, on considère le problème de test d’hypothèse sur le
paramètre θ. Ainsi, dans le cadre du modèle statistique (H n, {Pθ}θ∈Θ), on
se donne deux sous-ensembles Θ0 et Θ1, disjoints et inclus dans Θ (on
n’impose pas que leur union soit égale à Θ). Au vu d’une observation
X = (X1, . . . , Xn) ∼ Pθ, on veut décider si θ (le vrai paramètre) appartient
à Θ0, ce sera l’hypothèse dite nulle et notée H0 ; ou s’il appartient à Θ1, ce
sera l’hypothèse dite alternative, notée H1.

Dans le cadre du problème de test de H0 contre H1, un test est une sta-
tistique T à valeurs dans {0, 1} associée à la stratégie suivante : pour l’ob-
servation X = (X1, . . . , Xn), l’hypothèse H0 est conservée (respectivement
rejetée) si T(X) = 0 (respectivement T(X) = 1).
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Un test peut donc toujours s’écrire T(X) = 1X∈R, où R est la région de
rejet. Il est parfois plus naturel de l’écrire sous la forme T(X) = 1h(X)∈R′ ,
où h est une fonction mesurable appelée statistique de test. On dit aussi
souvent, en commettant un abus de langage, que R′ est la région de rejet
associée à la statistique de test h(X).

Le risque de première espèce du test T est la fonction définie sur Θ0 par

α : Θ0 → [0, 1]
θ 7→ EθT = Pθ(T(X) = 1).

La taille du test est le réel α⋆ défini par

α⋆ = sup
θ∈Θ0

α(θ).

On dit que le test T est de niveau α ∈ (0, 1) si sa taille est inférieure ou
égale à α.

Le risque de seconde espèce du test T est l’application définie sur Θ1 par

β : Θ1 → [0, 1]
θ 7→ 1 − EθT = Pθ(T(X) = 0).

À partir de là, on définit la puissance du test comme la fonction 1 − β,
c’est-à-dire l’application qui à chaque élément de Θ1 associe la probabilité
de prendre la bonne décision.

À défaut d’informations suffisantes ou appropriées sur la loi de la statis-
tique de test, on est amenés à définir la notion de test asymptotique.

Définition 18. Une suite de tests asymptotiques (Tn)n≥1 de niveau α ∈ (0, 1)
est une suite de tests qui vérifient

lim sup
n→+∞

sup
θ∈Θ0

EθTn ≤ α.

La procédure de décision est calquée sur celle des tests à taille d’échantillon
finie. La seule différence est qu’un test asymptotique est construit pour
contrôler le risque de première espèce, mais seulement asymptotiquement.
Dans ce contexte, il est raisonnable d’exiger une puissance asymptotique
maximale. C’est le concept de convergence décrit ci-dessous.
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Définition 19. Une suite de tests (Tn)n≥1 est dite convergente (ou consistante)
au niveau α ∈ (0, 1) si c’est une suite de niveau α telle que

lim
n→+∞

EθTn = 1, ∀θ ∈ Θ1.

Ainsi, une suite de tests convergente a une puissance qui tend vers 1
lorsque l’échantillon devient grand.

Exemple. (Test de signe). Soit X = (X1, . . . , Xn) i.i.d. de loi commune Qθ

sans atomes et de fonction de répartition Fθ = F(· − θ). On suppose que
la loi Qθ admet pour médiane θ, i.e F(0) = Qθ(Xi ≤ θ) = 1/2. On veut
réaliser le test (unilatère) de H0 : θ = 0 contre l’alternative H1 : θ > 0.

Une statistique naturelle est donnée par la statistique de signe Sn = n−1 ∑n
i=1 1Xi>0.

Or EθSn = 1− F(−θ) := µ(θ) et VθSn = n−1(1− F(−θ))F(−θ) := σ2(θ)/n
donc par le théorème central limite,

√
n(Sn − µ(θ)) converge en loi sous Pθ

vers N (0, σ2(θ)).

Sous l’hypothèse nulle, on a µ(0) = 1/2 et σ2(0) = 1/4, donc
√

n(Sn − 1/2)
converge en loi sous Pθ=0 vers N (0, 1/4). La suite de tests (Tn)n≥1 qui
rejettent H0 lorsque X appartient à la zone de rejet

Rn = {
√

n(Sn − 1/2) >
1
2

q1−α},

avec q1−α le quantile d’ordre 1 − α de la N (0, 1), est une suite de niveau
asymptotique α.

Par ailleurs, la puissance πn de cette suite de tests vérifie, pour tout θ > 0,

πn(θ) = Eθ(Tn) =Pθ(
√

n(Sn − 1/2) >
1
2

q1−α)

=Pθ

(√
n

Sn − µ(θ)

σ(θ)
>

1
2 q1−α −

√
n(1

2 − µ(θ))

σ(θ)

)
=1 − Φ

( 1
2 q1−α −

√
n(1

2 − µ(θ))

σ(θ)

)
+ o(1)

où Φ est la fonction de répartition de la N (0, 1). Le terme de droite converge
vers 1 lorsque n tend vers l’infini car pour θ > 0, on a µ(θ) = Qθ(X1 >
0) < 1/2. La suite de tests est donc convergente.
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Vitesse de convergence d’une suite de tests. En pratique, la notion de
convergence est trop faible pour qualifier l’optimalité d’un test, car c’est
une propriété qui s’avère assez répandue. Pour choisir entre deux suites
de tests, une approche plus intéressante consiste à considérer la puissance
calculée en des alternatives dont la difficulté augmente avec la taille de
l’échantillon.

Exemple. (Test de signe). Dans l’exemple précédent, pour toute suite (θn)n≥1
de paramètres dans l’alternative (i.e. θn > 0), la puissance du test vaut

πn(θn) = 1 − Φ
( 1

2 q1−α −
√

n(F(0)− F(−θn))

σ(θn)

)
+ o(1).

Si θn tend vers 0 assez vite pour que
√

n(F(0)− F(−θn)) tende vers 0, alors
π(θn) converge vers α et le test de signe n’est pas capable de distinguer
l’alternative de l’hypothèse nulle. Si θn tend vers 0 assez lentement pour
qu’au contraire

√
n(F(0)− F(−θn)) tende vers +∞, la puissance tend vers

1 et l’alternative θ = θn est facile à distinguer de l’hypothèse nulle. On
comprend que le cas intéressant surgit dans un cadre intermédiaire, quand
θn tend vers 0 mais que

√
n(F(0)− F(−θn)) se « stabilise ». En particulier,

si la fonction de répartition est différentiable au voisinage de 0, avec une
dérivée (positive) f (0), on a

√
n(F(0)− F(−θn)) =

√
nθn f (0) +

√
no(θn).

La suite d’alternatives intéressante à considérer est donc θn = h/
√

n pour
un h > 0. On obtient pour ces alternatives :

π(h/
√

n) = 1 − Φ
(

q1−α − 2h f (0)
)
+ o(1).

L’allure de cette fonction est donnée dans la figure 5.5.

Dans la suite, on fixe l’hypothèse nulle H0 et on s’intéresse à la puissance
d’une suite de tests pour des alternatives qui convergent vers l’hypothèse
nulle. Pour simplifier les notations, on s’intéresse au cas d’un paramètre
réel θ ∈ R (i.e. k = 1) et (sans perte de généralité) H0 : θ = 0. On suppose
que le test Tn rejette l’hypothèse nulle pour les grandes valeurs de la sta-
tistique hn(X) et que cette statistique est asymptotiquement normale pour
les alternatives θn = h/

√
n

√
n
(hn(X)− µ(θn))

σ(θn)

L(Pθn )−→ N (0, 1). (5.9)
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h

π

0

0.
05

Figure 5.1 – Allure de la fonction puissance pour les alternatives de la
forme θn = h/

√
n en fonction de h avec α = 0.05.

Attention : la convergence doit avoir lieu sous la loi Pθn qui est indexée par
n. Cette convergence ne découle donc pas simplement de la convergence

√
n
(hn(X)− µ(θ))

σ(θ)

L(Pθ)−→ N (0, 1), ∀θ ∈ Θ.

D’un autre côté, la convergence ci-dessus a lieu pour tous les θ ∈ Θ tandis
que (5.9) porte seulement sur un voisinage de θ = 0. On parle de normalité
asymptotique localement uniforme.

Théorème 16. Soient µ : Θ 7→ R et σ : Θ 7→ (0;+∞) des fonctions telles
que (5.9) soit vérifiée pour toute suite θn = h/

√
n. Supposons que µ (resp. σ) est

dérivable (resp. continue) en θ = 0. Alors la suite de tests Tn qui rejette H0 : θ = 0
contre H1 : θ > 0 lorsque hn(X) ∈ Rn avec

Rn = {
√

n(hn(X)− µ(0)) > σ(0)q1−α},

(où q1−α est le quantile d’ordre 1 − α de la loi N (0, 1)) est asymptotiquement de
niveau α. De plus, la puissance de cette suite vérifie

πn

( h√
n

)
→ 1 − Φ

(
q1−α − h

µ′(0)
σ(0)

)
,

pour tout h.
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Démonstration. L’hypothèse (5.9) implique en particulier que
√

n (hn(X)−µ(0))
σ(0)

converge en loi sous l’hypothèse nulle (θ = 0) vers N (0, 1). Donc la suite
de tests est asymptotiquement de niveau α.

Considérons à présent des alternatives qui convergent vers H0 de la forme
θn = h/

√
n. La puissance vérifie

πn(θ) = Eθn Tn = Pθn(
√

n(hn(X)− µ(0)) > σ(0)q1−α)

= Pθn

(√
n
(hn(X)− µ(θn))

σ(θn)
>

σ(0)q1−α +
√

n(µ(0)− µ(θn))

σ(θn)

)
= 1 − Φ

(σ(0)q1−α +
√

n(µ(0)− µ(θn))

σ(θn)

)
+ o(1),

d’après (5.9). Puisque σ est continue en 0, que µ est dérivable en ce même
point et θn = h/

√
n, on obtient

√
n
(µ(0)− µ(θn))

σ(θn)
→ −h

µ′(0)
σ(0)

,

et la continuité de Φ achève la preuve.

Sous l’hypothèse de normalité asymptotique localement uniforme, la puis-
sance de la suite de tests dépend uniquement de la pente µ′(0)

σ(0) . Deux suites
de tests (de même niveau asymptotique α) peuvent donc être comparées
via leur pente : pour le test de H0 : θ = 0 contre θ > 0, celui qui a la plus
grande pente aura la plus grande puissance et sera donc le meilleur.

Définition 20 (Efficacité relative asymptotique). Soient deux suites de test
(T1

n)n≥1 et (T2
n)n≥1 de même niveau asymptotique α pour le test de H0 : θ = 0 et

satisfaisant (5.9) (pour (µ1, σ1) et (µ2, σ2), respectivement. Alors, le rapport

r =
(µ′

1(0)/σ1(0)
µ′

2(0)/σ2(0)

)2

est l’efficacité relative asymptotique de T1 par rapport à T2.

Exemple. [Test de signe versus t-test]. Soit X = (X1, . . . , Xn) i.i.d. de den-
sité f (· − θ) où f est une fonction paire et le moment d’ordre 2 noté
σ2 =

∫
x2 f (x)dx < +∞. Remarquez que la fonction de répartition corres-

pondante F(· − θ) vérifie F(0) = 1/2 ; on est donc dans un cas particulier
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du contexte de l’exemple précédent sur le test de signe. On veut toujours
réaliser le test de H0 : θ = 0, qui correspond à l’hypothèse que les observa-
tions ont une distribution symétrique par rapport à 0.

Le test de Student (t-test) 4 de niveau asymptotique α utilise la statistique
de test hn(X) =

√
nX̄n/Sn et rejette l’hypothèse nulle pour les grandes

valeurs de hn(X) (en valeur absolue si on fait un test bilatère ; et pour les
valeurs trop petites ou trop grandes en cas de test unilatère). (Attention
sans hypothèse gaussienne sur les Xi, la statistique de Student ne suit pas
une loi de Student !) Commençons par vérifier l’hypothèse (5.9) pour cette
suite. On considère des alternatives θn = h/

√
n et on remarque

√
n
( X̄n

Sn
− h√

nσ

)
=

√
n(X̄n − h/

√
n)

Sn
+ h
( 1

Sn
− 1

σ

)
.

Remarquons que sous Pθn , la loi de X̄n − h/
√

n ne dépend plus de θn ; c’est
la même que celle de X̄n sous θ = 0. De la même façon, la loi sous Pθn

de la variance empirique S2
n = n−1(∑n

i=1 X2
i − X̄2

n) ne dépend pas de θn et
a la même loi que sous θ = 0. On en déduit que comme Sn converge en
probabilité vers σ (sous toutes les lois Pθ, y compris Pθn), en combinant le
lemme de Slutsky avec la loi des grands nombres pour la variable

√
n(X̄n −

h/
√

n)/σ qui converge sous Pθn vers une N (0, 1), on obtient que le premier
terme converge en loi sous Pθn vers une N (0, 1) et le second terme converge
vers 0. Donc (5.9) est vérifiée avec µ(θ) = θ/σ et σ(θ) = 1. La pente de cette
suite de tests vaut 1/σ = (

∫
x2 f (x)dx)−1/2.

La pente de la suite de tests de signe vaut (reprendre les calculs précédents)
2 f (0). On en déduit que l’efficacité relative asymptotique de la suite de
tests de signe par rapport à la suite de t-tests vaut

4 f 2(0)(
∫

x2 f (x)dx).

Ce rapport dépend de la densité f . Par exemple pour f une densité uni-
forme (sur un intervalle symétrique autour de 0) on trouve 1/3 qui est
inférieur à 1 (donc le t-test est meilleur en ce sens) alors que pour la den-
sité de Laplace, on trouve 2 (et le test de signe est meilleur).

4. Voir le Chapitre 6.
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Chapitre 6

Échantillons gaussiens et
modèle linéaire

6.1 Notations

▷ χ2
n : loi du chi-deux à n ∈ N⋆ degrés de liberté. Densité par rapport à

la mesure de Lebesgue sur R :

1
2n/2Γ(n/2)

x(n−2)/2e−x/21R+(x), x ∈ R.

Note : χ2
n est la loi de U2

1 + · · ·+U2
n, où U1, . . . , Un sont des variables

aléatoires indépendantes de même loi N (0, 1).

▷ Tn : loi de Student à n ∈ N⋆ degrés de liberté. Densité par rapport à
la mesure de Lebesgue sur R :

Γ
(
(n + 1)/2

)
√

nπΓ(n/2)

(
1 +

x2

n

)−(n+1)/2
, x ∈ R.

Note : Tn est la loi de
√

nU/
√

V, où U et V sont des variables aléa-
toires indépendantes de lois respectives N (0, 1) et χ2

n.

▷ F (n1, n2) : loi de Fisher de paramètres (n1, n2) ∈ (N⋆)2. Densité par
rapport à la mesure de Lebesgue sur R :

1
B(n1/2, n2/2)

(n1x)n1/2nn2/2
2

x(n1x + n2)(n1+n2)/2
1R+(x), x ∈ R,

105
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avec B la fonction bêta définie pour tout (t1, t2) ∈ (R⋆
+)

2 par la
relation B(t1, t2) =

∫ 1
0 ut1−1(1 − u)t2−1du.

Note : F (n1, n2) est la loi de (U/n1)/(V/n2), où U et V sont des
variables aléatoires indépendantes de lois respectives χ2

n1
et χ2

n2
.

6.2 Rappels sur les vecteurs gaussiens

Cas réel. Une variable aléatoire réelle X est dite gaussienne (ou de loi
normale) de paramètres m ∈ R et σ2 ∈ R+ (σ ≥ 0) si sa fonction caracté-
ristique s’écrit

E exp(iuX) = exp
(

ium − σ2u2

2

)
, ∀u ∈ R.

La loi de X est notée N (m, σ2), et l’on a EX = m et VX = σ2. Lorsque
σ = 0, on dit que X est dégénérée ; dans le cas contraire, elle admet la
densité par rapport à la mesure de Lebesgue

1√
2πσ2

exp
(
− (x − m)2

2σ2

)
, ∀x ∈ R.

Cas vectoriel. Plus généralement, une variable aléatoire X à valeurs dans
Rd est un vecteur gaussien de Rd s’il existe M ∈ Rd et Σ une matrice
d × d réelle, symétrique et positive, tels que la fonction caractéristique de
X s’écrive

E exp(iu⊺X) = exp
(

iu⊺M − 1
2

u⊺Σu
)

, ∀u ∈ Rd.

(Les vecteurs sont considérés comme des matrices colonnes.) La loi de X
est notée Nd(M, Σ). Alors M est la moyenne de X, i.e. EX = M, et Σ est la
matrice de variance-covariance de X, i.e.

Σ = E(X − EX)(X − EX)⊺.

Lorsque la matrice Σ est inversible (i.e., définie positive), X admet la densité
par rapport à la mesure de Lebesgue

1
(2π)d/2

√
det(Σ)

exp
(
− 1

2
(x − M)⊺Σ−1(x − M)

)
, ∀x ∈ Rd.
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Lorsque Σ n’est pas inversible, on montre facilement que la loi de X est
P-p.s. concentrée sur le sous-espace affine de Rd d’origine M et engendré
par les vecteurs propres correspondant aux valeurs propres non nulles de
Σ.

Un moyen simple de montrer qu’un vecteur aléatoire est gaussien est d’uti-
liser la définition équivalente suivante :

Proposition 7. Un vecteur aléatoire est gaussien si et seulement si toute combi-
naison linéaire de ses composantes est une variable aléatoire réelle gaussienne.

Démonstration. Soit X ∈ Rd gaussien, λ ∈ Rd et Y = λ⊺X une combi-
naison linéaire de ses composantes. Alors E exp(itY) = E exp(itλ⊺X) =
E exp(i(tλ)⊺X) = exp(i(tλ)⊺M− (1/2)(tλ)⊺Σ(tλ)) = exp(itλ⊺M− (t2/2)λ⊺Σλ)
ce qui signifie que Y est une variable aléatoire gaussienne avec EY = λ⊺M
et VY = λ⊺Σλ.

Réciproquement, soit X une variable aléatoire à valeurs dans Rd avec le vec-
teur EX = M et la matrice VX = E(X − M)(X − M)⊺ = Σ. Alors pour tout
u ∈ Rd, la variable aléatoire (réelle) u⊺X a pour moyenne E(u⊺X) = u⊺M et
sa variance vaut E(u⊺X − u⊺M)2. Comme u⊺X − u⊺M est un scalaire alors
u⊺X − u⊺M = (u⊺X − u⊺M)⊺ = X⊺u − M⊺u. Donc sa variance E(u⊺X −
u⊺M)2 = E(u⊺X − u⊺M)(X⊺u − M⊺u) = u⊺E(X − M)(X − M)⊺u = u⊺Σu.

Supposons que cette variable aléatoire est gaussienne pour tout u. Alors
sa fonction caractéristique prend la forme E exp(itu⊺X) = exp(itu⊺M −
(t2/2)u⊺Σu). Pour t = 1, cela donne E exp(iu⊺X) = exp(iu⊺M− (1/2)u⊺Σu).
Comme c’est vrai pour tout u ∈ Rd, le vecteur X est gaussien.

Mentionnons pour finir deux résultats d’utilité constante dans la manipu-
lation des vecteurs gaussiens.

Proposition 8.
(i) Transformation affine. Si A est une matrice réelle de taille k × d, et b ∈

Rk et X est un vecteur de loi Nd(M, Σ), alors AX + b suit la loi Nk(AM+
b, AΣA⊺).

(ii) Caractérisation de l’indépendance. Soit X un vecteur gaussien. Les
composantes de X sont des variables aléatoires réelles indépendantes si et
seulement si la matrice de variance-covariance de X est diagonale.
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Ainsi, lorsque X = (X1, . . . , Xd) est un vecteur gaussien, on a l’équivalence :

∀i ̸= j, Xi et Xj indépendantes ⇔ Cov(Xi, Xj) = 0.

Rappelons que seule l’implication ⇒ est vraie dans le cas général.

Démonstration. (i) On a

E exp(iu⊺(AX + b)) = exp(iu⊺b)E exp(i(A⊺u)⊺X)

= exp(iu⊺b + (A⊺u)⊺M − (1/2)(A⊺u)⊺Σ(A⊺u))
= exp(iu⊺b + u⊺AM − (1/2)(u⊺A)Σ(A⊺u))
= exp(iu⊺(b + AM)− (1/2)u⊺AΣA⊺u).

(ii) L’implication est immédiate. Réciproque : si Cov(Xi, Xj) = 0, la ma-
trice Σ est diagonale, la fonction caractéristique de X se présente comme
le produit de fonctions caractéristiques de composantes, ce qui est la fonc-
tion caractéristique du vecteur gaussien avec des composantes indépen-
dantes.

Exemple. Soit Z ∼ N (0, 1) et ε ∼ B(1/2) deux variables aléatoires indé-
pendantes. Alors X1 = Z et X2 = (2ε − 1)Z sont des variables aléatoires
réelles gaussiennes (pourquoi ?), mais X = (X1, X2) n’est pas un vecteur
gaussien, puisque X1 + X2 = 2εZ prend avec probabilité 1/2 la valeur 0.
On notera que Cov(X1, X2) = 0 (faites le calcul) mais que X1 et X2 ne sont
pas indépendantes (si elles l’étaient, comme leurs lois sont gaussiennes, le
vecteur X serait gaussien . . . ).

6.3 Théorème de Cochran

Dans le monde des vecteurs gaussiens, orthogonalité et indépendance se
confondent. Ce lien entre la géométrie et les probabilités a pour consé-
quence le théorème de Cochran, qui constitue la pierre angulaire de toute
la statistique des échantillons gaussiens.

Théorème 17 (Cochran). Soit σ > 0, X ∼ Nn(0, σ2Idn) et V1, . . . , Vp des
sous-espaces vectoriels orthogonaux de dimensions respectives r1, . . . , rp tels que

V1 ⊕ · · · ⊕ Vp = Rn.
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Alors les projections orthogonales π1, . . . , πp de X sur V1, . . . , Vp sont des vec-
teurs gaussiens indépendants et, pour chaque i = 1, . . . , p,

1
σ2∥πi∥2 ∼ χ2(ri).

Démonstration. Soit (ei
j)i,j une base orthonormée de Rn telle que pour chaque

i = 1, . . . , p, (ei
j)1≤j≤ri est une base orthonormée de Vi. Pour tout i =

1, . . . , p, on a πi = MiX, où Mi est la matrice symétrique de taille n × n
définie par

Mi = (ei
1 · · · ei

ri
) (ei

1 · · · ei
ri
)⊺.

Noter que puisque les vecteurs (ei
j)i,j sont normés et orthogonaux, Mi est

idempotente (M2
i = Mi) et Mi Mj = 0 pour tout i ̸= j.

Montrons la première assertion du théorème. Puisque X est gaussien, toute
combinaison linéaire de ses composantes est gaussienne. En conséquence,
toute combinaison linéaire de composantes du vecteur (π1, . . . , πp) (est en-
core une combinaison linéaire des composantes de X et donc) est aussi une
variable gaussienne. De plus, la covariance entre les vecteurs aléatoires πi
et πj est nulle pour tout i ̸= j. En effet, ces vecteurs aléatoires étant centrés,

Cov(πi, πj) = E (πi − Eπi)
(
πj − Eπj

)⊺
= Eπiπ

⊺
j

= EMiX(MjX)⊺ = MiEXX⊺Mj

= σ2Mi Mj,

d’où Cov(πi, πj) = 0. Par suite, π1, . . . , πp sont des vecteurs gaussiens in-
dépendants.

Pour montrer la seconde assertion, fixons i = 1, . . . , p et remarquons que
comme Mi est symétrique et idempotente :

πi = MiX ∼ Nn
(
0, σ2Mi Idn Mi

)
= Nn(0, σ2Mi).

En notant Ei la matrice de taille n × ri définie par Ei = (ei
1 · · · ei

ri
), on a

Mi = EiE
⊺
i et donc

πi ∼ σEi Nri(0, Idri).

Or, si Z est un vecteur aléatoire de loi Nri(0, Idri), ∥EiZ∥2 = ∥Z∥2 ∼ χ2
ri

car
E⊺

i Ei = Idri , d’où le théorème.
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6.4 Échantillons gaussiens

Rappelons que pour une suite X1, . . . , Xn de variables aléatoires réelles, on
note

X̄n =
1
n

n

∑
i=1

Xi, S2
n =

1
n

n

∑
i=1

(Xi − X̄n)
2 et S̃2

n =
1

n − 1

n

∑
i=1

(Xi − X̄n)
2.

Rappelons que S2
n = (1/n)∑ X2

i − 2X̄n(1/n)∑ Xi + X̄2
n = 1/n ∑ X2

i − X̄2
n.

Alors ES2
n = EX2

1 − EX̄2
n = σ2 +m2 −VX̄n − (EX̄n)2 = σ2 +m2 − nσ2/n2 −

m2 = n−1
n σ2. Ainsi S2

n est un estimateur de la variance σ2 qui a un biais. On
lui préfère donc S̃2

n qui est sans biais.

Le théorème ci-dessous met en évidence le rôle tenu par la loi de Student
et la loi du χ2 lorsque X1, . . . , Xn sont indépendantes et de même loi gaus-
sienne.

Théorème 18 (Fisher). Soit m ∈ R, σ > 0 et X1, . . . , Xn des variables aléatoires
indépendantes et de même loi N (m, σ2). Alors :
(i) X̄n et S2

n sont indépendantes.
(ii) nS2

n/σ2 ∼ χ2(n − 1) (ou encore (n − 1)S̃2
n/σ2 ∼ χ2(n − 1)).

(iii)
√

n(X̄n − m)/S̃n ∼ T (n − 1).

Remarque. Dans ce théorème, (iii) est à rapprocher de la propriété clas-
sique

√
n(X̄n −m)/σ ∼ N (0, 1) satisfaite par la suite de variables aléatoires

indépendantes X1, . . . , Xn de même loi N (m, σ2).

Démonstration. Soit V le sous-espace vectoriel de Rn engendré par e =
(1, . . . , 1)⊺ et soit X−m

σ = (X1−m
σ , . . . , Xn−m

σ )⊺ ∼ Nn(0, Idn).

Le projecteur orthogonal P sur V est la matrice n × n dont tous les coeffi-
cients valent 1/n. En effet, la matrice C est la matrice colonne qui se com-
pose de coordonnées du vecteur e normalisé : (1/

√
n, . . . , 1/

√
n). Alors

P = CC⊺ est la matrice de taille n × n avec tous les éléments 1/n.

De ce fait,

P(
X − m

σ
) = (

X̄n − m
σ

)e et (Idn − P)
X − m

σ
=

1
σ

 X1 − X̄n
...

Xn − X̄n

 .
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Comme (Idn − P)X−m
σ est la projection orthogonale de X−m

σ sur l’orthogo-
nal de V et X−m

σ suit la loi Nn(0, Idn), on déduit du théorème de Cochran
(Théorème 17) que P X−m

σ est indépendant de (Idn − P)X−m
σ , et donc en

particulier que X̄n est indépendant de S2
n = (σ2/n)∥(Idn − P)X∥2, d’où (i).

De plus, comme V est de dimension 1,

nS2
n

σ2 = ∥(Idn − P)X∥2 ∼ χ2(n − 1)

d’après le théorème de Cochran, d’où (ii). Par la définition de S̃2
n

(n − 1)S̃2
n

σ2 =
nS2

n
σ2 ∼ χ2

n−1.

Par ailleurs P(X−m
σ ) = X̄n−m

σ e est un vecteur gaussien N (0, PIdnP⊺) =
N (0, P) (car P étant la matrice d’un projecteur, PP⊺ = PP = P), en parti-
culier la variable aléatoire X̄n−m

σ est gaussienne N (0, 1/n). Donc
√

n(X̄n−m)
σ

est gaussienne centrée réduite.

Enfin, (iii) se déduit des résultats précédents, car
√

n( X̄n−m
σ ) et (n− 1)S̃2

n/σ2

sont indépendantes, et de lois respectives N (0, 1) et χ2(n − 1). On a alors

√
n(X̄n − m)√

S̃2
n

=

√
n − 1

√
n X̄n−m

σ√
(n−1)S̃2

n
σ2

=

√
n − 1U√

V

de loi de Student à n − 1 degrés de libertés.

Le Théorème de Fisher (Théorème 18) a des conséquences importantes
pour le traitement des échantillons gaussiens i.i.d.. Nous détaillons dans
les paragraphes qui suivent quatre exemples, mais bien d’autres exten-
sions sont possibles. À partir de maintenant, on considère un n-échantillon
X = (X1, . . . , Xn) i.i.d., de loi commune N (m, σ2), avec m ∈ R et σ > 0.

Intervalle de confiance pour m. Lorsque σ est connu, on utilise l’estima-
teur X̄n et le fait que

√
n

X̄n − m
σ

∼ N (0, 1)
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quelque soit la valeur de m. C’est une statistique pivotale, pour obtenir
l’intervalle de confiance[

X̄n − q1− α
2

σ√
n

, X̄n + q1− α
2

σ√
n

]
de niveau (1 − α) pour le paramètre m (comme d’habitude, q1− α

2
désigne

le quantile d’ordre (1 − α
2 ) de la loi N (0, 1)).

Lorsque σ est inconnu, cet intervalle n’est pas utilisable. On s’en sort grâce
au Théorème 18, qui nous permet d’affirmer que

√
n

X̄n − m
S̃n

∼ T (n − 1).

C’est une autre statistique pivotale. On en conclut que[
X̄n − t(n−1)

1− α
2

S̃n√
n

, X̄n + t(n−1)
1− α

2

S̃n√
n

]

est un intervalle de confiance pour m de niveau (1 − α), où t(n−1)
1− α

2
est le

quantile d’ordre 1 − α
2 de la loi T (n − 1). On notera le remplacement de

q1− α
2

par t(n−1)
1− α

2
ainsi que celui de σ par S̃n : ce mécanisme est parfois appelé

« studentisation » .

Intervalle de confiance pour σ2. D’après (ii) du Théorème 18,

nS2
n

σ2 ∼ χ2(n − 1).

C’est la statistique pivotale pour σ2. On en déduit que nS2
n

x(n−1)
1− α

2

,
nS2

n

x(n−1)
α
2


est un intervalle de confiance pour σ2 de niveau (1 − α), où x(n−1)

α est le
quantile d’ordre α de la loi χ2(n− 1) (noter le sens des dénominateurs dans
l’intervalle).
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Test de Student. Construisons un test de niveau α ∈ (0, 1) dans le pro-
blème de test de

H0 : m ≥ m1 contre H1 : m < m1,

avec σ2 inconnu et m1 un réel fixé. Un protocole naturel de rejet pour ce
problème est de la forme X̄n < kα, avec kα un seuil à préciser, car H0 est re-
jetée lorsque la moyenne des observations prend une valeur anormalement
faible.

Si Tn est une variable aléatoire de loi T (n − 1), on a, ∀m ≥ m1,

P(X̄n < kα) = P
(√

n
X̄n − m

S̃n
<

√
n

kα − m
S̃n

)
= P

(
Tn <

√
n

kα − m
S̃n

)
,

la dernière égalité découlant du Théorème 18. Du coup,

sup
m≥m1

P(X̄n < kα) = P
(

Tn ≤
√

n
kα − m1

S̃n

)
.

Il suffit donc de choisir kα tel que

kα = m1 + t(n−1)
α

S̃n√
n

,

où t(n−1)
α est le quantile d’ordre α de la loi T (n− 1) . Ainsi, le test de région

de rejet

RStudent =

{
(x1, . . . , xn) ∈ Rn : x̄n < m1 + t(n−1)

α
S̃n√

n

}
,

appelé test de Student, est de niveau (de taille) α. La procédure de décision
consiste donc à rejeter H0 au niveau α lorsque (X1, . . . , Xn) ∈ RStudent. (On
remarque que t(n−1)

α remplace qα et que S̃n remplace σ.

On montre de même que le test bilatéral

H0 : m = m1 contre H1 : m ̸= m1
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est associé à la région de rejet

RStudent =

{
(x1, . . . , xn) ∈ Rn : |x̄n − m1| > t(n−1)

1− α
2

S̃n√
n

}
.

En effet, dans ce cas le risque de l’erreur de première espèce est égal à la
taille du test

Pm1(X ∈ RStudent) = P
(√

n|Xn − m|/S̃n > t(n−1)
1−α/2

)
= P(|Tn−1| > t(n−1)

1−α/2) = 1 − (1 − α/2) + 1 − (1 − α/2) = α.

Test de Fisher. Construisons un test de niveau α ∈ (0, 1) dans le pro-
blème de test de

H0 : σ ≥ σ1 contre H1 : σ < σ1,

avec σ1 > 0 fixé. Une région de rejet naturelle pour ce problème de test est
de la forme σ̂2

n < kα avec kα un seuil à préciser, car H0 est rejetée lorsque
la variance empirique prend une valeur anormalement faible. Sous H0 (i.e.
σ ≥ σ1), d’après le Théorème 18,

P(S̃2
n < kα) = P

( (n − 1)S̃2
n

σ2 <
(n − 1)kα

σ2

)
= P

(
Z <

(n − 1)kα

σ2

)
,

où Z ∼ χ2(n − 1). Dès lors,

sup
σ≥σ1

P(S̃2
n < kα) = P

(
χ2(n − 1) ≤ (n − 1)kα

σ2
1

)
.

On choisit kα tel que

kα =
x(n−1)

α

n − 1
σ2

1 ,

où x(n−1)
α est le quantile d’ordre α de la loi χ2(n − 1). Le test de Fisher est

le test de région de rejet

RFisher =

{
(x1, . . . , xn) ∈ Rn : S̃2

n <
x(n−1)

α

n − 1
σ2

1

}
.
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Ce test est de taille (et de niveau) α, et la procédure de décision consiste à
rejeter H0 au niveau α lorsque (X1, . . . , Xn) ∈ RFisher.

Par ailleurs, sa fonction de puissance sur (0, σ1) est donnée par

P(S̃2
n <

x(n−1)
α

n − 1
σ2

1 ) = P
( (n − 1)S̃2

n
σ2 < x(n−1)

α
σ2

1
σ2

)
= Fχ2(n−1)(x(n−1)

α σ2
1 /σ2),

où Fχ2(n−1) est la fonction de répartition de la loi de χ2(n − 1). Sa plus
petite valeur sur (0, σ1) est α (atteinte pour σ = σ1) et cette fonction tend
vers 1 quand σ → 0. C’est aussi un test sans biais.

6.5 Régression linéaire des moindres carrés

Modèle statistique. De manière générale, il s’agit de modéliser une ex-
périence dont chaque observation Yi ∈ R, 1 ≤ i ≤ n, est influencée par des
mesures (déterministes) connues x1

i , . . . , xk
i . On s’intéresse par exemple à

l’effet pour un individu i de la concentration dans le sang de k marqueurs
chimiques (les x1

i , . . . , xk
i ) sur une certaine charge virale (Yi). En désignant

par X la matrice de taille n × k définie par X = (xj
i)1≤i≤n,1≤j≤k, le modèle

de régression linéaire multiple admet la formulation suivante :

Y = Xθ + ε,

avec ε ∼ Nn(0, σ2Idn), pour des paramètres inconnus θ ∈ Rk et σ > 0. Les
k vecteurs formant les colonnes de X sont appelés régresseurs. Ce modèle
s’écrit, de façon équivalente,(

Rn, {Nn(Xθ, σ2Idn)}θ∈Rk,σ>0

)
et l’observation associée n’est autre que Y = (Y1, . . . , Yn)⊺. On impose donc
en particulier l’hypothèse d’homoscédasticité selon laquelle la matrice de
variance-covariance de la loi dont l’observation est issue est proportionnelle
à la matrice identité. Notons également que, pour tout i, si θ = (θ1, . . . , θk)

⊺,
on a

Yi =
k

∑
j=1

xj
iθj + εi,
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avec ε1, . . . , εn des variables aléatoires indépendantes de même loi N (0, σ2).
En réduisant au besoin leur nombre, on peut toujours considérer que les
régresseurs sont linéairement indépendants et que, par conséquent, la ma-
trice X est de rang k. Cela implique en particulier que k ≤ n.

Estimation des paramètres. Dans ce qui suit, E désigne l’espace vectoriel
engendré par les colonnes de X et uE désigne la projection orthogonale de
u ∈ Rn sur E.

Théorème 19 (Estimation des moindres carrés). Soit θ̂ ∈ Rk tel que YE =
Xθ̂ soit la projection orthogonale de Y sur E. Alors

(a) θ̂ = Argminθ∈Rk ∥Y − Xθ∥
(b) θ̂ = (X⊺X)−1X⊺Y
(c) θ̂ ∼ Nk(θ, σ2(X⊺X)−1). C’est en particulier un estimateur sans biais de θ.
(d) σ̂2 = ∥Y−Xθ̂∥2

n−k ∼ σ2

n−k χ2
(n−k) est un estimateur de σ2.

(e) θ̂ et σ̂2 sont indépendants.

Démonstration. La matrice X est la matrice d’une application linéaire de Rk

dans E ⊂ Rn avec k ≤ n, application qui est injective (car matrice de rang
plein) donc la projection orthogonale YE de Y sur E s’écrit YE = Xθ̂, où θ̂

existe et est unique. On choisit naturellement θ̂ comme estimateur de θ et,
puisque par définition d’une projection orthogonale

θ̂ = arg min
θ∈Rk

∥Y − Xθ∥,

on l’appelle l’estimateur des moindres carrés.

On peut décrire explicitement θ̂ en remarquant que, comme Y − Xθ̂ est
dans l’orthogonal de E, pour tout u ∈ Rk :

⟨Xu, Y − Xθ̂⟩ = 0.

Par suite, ⟨u, X⊺Y − X⊺Xθ̂⟩ = 0 pour tout u ∈ Rk et donc X⊺Y = X⊺Xθ̂.
Remarquez que la matrice X⊺X (de taille k × k) est symétrique et positive
(pour tout u ∈ Rk, on a u⊺X⊺Xu = ⟨Xu, Xu⟩ ≥ 0). Comme par ailleurs
rang(X) = k, la matrice X⊺X est définie positive (si < Xu, Xu >= 0, alors
Xu = 0 donc u = 0). Ainsi X⊺X est une matrice inversible et son inverse est
aussi symétrique. On obtient

θ̂ = (X⊺X)−1X⊺Y.
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En conséquence, θ̂ est un vecteur gaussien et c’est un estimateur sans biais
de θ car, si Eθ,σ désigne l’espérance sous la loi de Y alors

Eθ,σ θ̂ = (X⊺X)−1X⊺Eθ,σY = (X⊺X)−1X⊺Xθ = θ.

Par ailleurs,

Vθ,σ θ̂ = (X⊺X)−1X⊺σ2Idn[(X⊺X)−1X⊺]⊺

= σ2(X⊺X)−1X⊺X(X⊺X)−1 = σ2(X⊺X)−1,

ce qui montre le point (c).

Construisons maintenant un estimateur de σ2. Comme YE est la projection
de Y = Xθ + ε sur E et Xθ ∈ E on a YE = Xθ + εE et Y − YE = ε − εE, d’où
∥Y − YE∥2 ∼ σ2χ2(n − k) d’après le théorème de Cochran (Théorème 17).
La moyenne de la loi χ2(n − k) valant n − k, l’estimateur

σ̂2 =
∥Y − YE∥2

n − k
=

∥Y − Xθ̂∥2

n − k

de σ2 est donc sans biais.

Par ailleurs, toujours d’après le théorème de Cochran, on a d’une part que

(n − k)σ̂2

σ2 ∼ χ2(n − k)

et, d’autre part, que θ̂ et σ̂2 sont des vecteurs aléatoires indépendants
(puisque YE et YE⊥ = Y − YE le sont).

Partant du théorème précédent, il est alors possible de construire des inter-
valles de confiance et des tests portant sur θ ou ses composantes. Nous en
donnons quelques exemples ci-dessous.

Test de Wald. Le test de Wald est un test d’hypothèses sur le paramètre
θ du modèle linéaire. On l’écrit de la façon générale suivante : On se donne
une matrice C de taille q × k, de rang q ≤ k (pour éviter les redondances)
et un vecteur a ∈ Rq. L’objectif est de tester

H0 : Cθ = a contre H1 : Cθ ̸= a.
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Par exemple si C est l’identité, on teste si la valeur de θ vaut un vecteur
a fixé. Lorsque q = 1, on teste en fait une combinaison affine des compo-
santes de θ, comme par exemple la nullité de l’un des θj (dans ce cas C est
une matrice de taille 1 × k et a est un nombre réel).

Le test utilise la statistique de Wald

W(Y) =
(Cθ̂ − a)⊺

(
C(X⊺X)−1C⊺

)−1
(Cθ̂ − a)/q

∥Y − Xθ̂∥2/(n − k)
. (6.1)

Théorème 20. Pour tout paramètre θ ∈ Rk, la statistique de Wald définie par (6.1)
suit, sous H0, la loi de Fisher F (q, n − k). Par ailleurs, si q = 1 alors

Z =
Cθ̂ − a√

C(X⊺X)−1C⊺
×

√
n − k

∥Y − Xθ̂∥

suit, sous H0, la loi de Student à n − k degrés de libertés.

Démonstration. 1) On commence par prouver qu’il existe une matrice ∆ de
taille q × q symétrique et définie positive telle que

C(X⊺X)−1C⊺ = ∆2.

Rappelons que (X⊺X)−1 est symétrique définie positive, d’où il vient que
C(X⊺X)−1C⊺ est également symétrique. Par ailleurs comme C est de rang q,
la matrice C(X⊺X)−1C⊺ est également définie positive, ce qui assure l’exis-
tence (et même l’unicité) de ∆ (racine carrée). D’après le théorème 19,

Cθ̂ − a ∼ Nq(Cθ − a, σ2C(X⊺X)−1C⊺) = Nq(0, σ2∆2).

Alors ∆−1(Cθ̂ − a) ∼ Nq(0, σ2Id) et ∥∆−1(Cθ̂ − a)∥2 ∼ σ2χ2(q). Par ailleurs,

∥∆−1(Cθ̂ − a)∥2 = (Cθ̂ − a)⊺(∆2)−1(Cθ̂ − a)

= (Cθ̂ − a)⊺C(X⊺X)−1C⊺(Cθ̂ − a).

Finalement

(Cθ̂ − a)⊺
(
C(X⊺X)−1C⊺)−1

(Cθ̂ − a) ∼ σ2χ2(q).
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Toujours par le théorème 19, ∥Y − Xθ̂∥2 sont θ̂ indépendants, et ∥Y − Xθ̂∥2

est de loi σ2χ2(n − k). Il reste à écrire

(Cθ̂ − a)⊺
(
C(X⊺X)−1C⊺

)−1
(Cθ̂ − a)

∥Y − Xθ̂∥2
× n − k

q

qui est de loi F (q, n − k).

Lorsque q = 1 : C(X⊺X)−1C⊺ est de taille 1× 1, c’est un réél. Donc Cθ̂ − a ∼
N1(0, σ2C(X⊺X)−1C⊺) d’où Cθ̂−a

σ
√

C(X⊺X)−1C⊺
est de loi N1(0, 1). Par ailleurs

∥Y − Xθ̂∥2/σ2 est indépendante de θ̂, et donc de la variable précédente, et
suit la loi χ2(n − k).

Ainsi, si f (q,n−k)
1−α désigne le quantile d’ordre (1 − α) de la loi F (q, n − k),

on a, sous H0,
PH0

(
W(Y) > f (q,n−k)

1−α

)
= α.

La région de rejet

RWald =
{

y ∈ Rn : W(y) > f (q,n−k)
1−α

}
nous donne donc un test (dit de Wald) de niveau (de taille) α pour le pro-
blème de test de H0 : Cθ = a contre H1 : Cθ ̸= a. La procédure de décision
consiste à rejeter H0 au niveau α si l’observation Y tombe dans RWald.

Pour q = 1, ce test reste valable. On peut cependant également utiliser le
test dit de Student, de région de rejet

RStudent =

{
y ∈ Rn :

∣∣∣∣ Cθ̂ − a
σ̂
√

C(X⊺X)−1C⊺

∣∣∣∣ > t(n−k)
1− α

2

}
,

où t(n−k)
1− α

2
est le quantile d’ordre 1 − α

2 de la loi T (n − k).

En suivant ces mêmes principes, on montre facilement que{
a ∈ Rk :

(Cθ̂ − a)⊺
(
C(X⊺X)−1C⊺

)−1
(Cθ̂ − a)/q

∥Y − Xθ̂∥2/(n − k)
≤ f (q,n−k)

1−α

}
fournit un ellipsoïde de confiance de niveau (1 − α) pour le paramètre Cθ.
Lorsque C = Id, nous avons obtenu un ellipsoïde de confiance pour le
vecteur θ à valeurs dans Rk et si k = 1 un intervalle de confiance pour θ.
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Par ailleurs pour q = 1 on obtient l’intervalle de confiance pour la combi-
naison affine Cθ suivant de niveau 1 − α :[

Cθ̂ ± t(n−k)
1− α

2
σ̂
√

C(X⊺X)−1C⊺

]
où pour rappel σ̂ = ∥Y − Xθ̂∥/

√
n − k.

Test de Fisher de l’utilité des régresseurs. Dans le cadre d’une modé-
lisation trop complète, tous les régresseurs n’ont pas la même influence et
certains n’ont qu’une contribution mineure. Nous allons construire un test
dans le but de supprimer ces régresseurs à l’influence réduite.

Fixons q = 0, . . . , k − 1. S’interroger sur l’utilité des (k − q) derniers régres-
seurs mène au problème de test suivant :

H0 : ∀i = q + 1, . . . , k, θi = 0 contre H1 : ∃i = q + 1, . . . , k, θi ̸= 0.

Noter que c’est un cas particulier du test de Wald avec la matrice C de
taille (k − q)× k dont les q premières colonnes sont nulles et les suivantes
forment Idk−q (cette matrice est de rang q′ = k − q). Mais nous allons pré-
senter différemment ce cas particulier (pour le même résultat au final).

Notons R1, . . . , Rk les k vecteurs (régresseurs) formant les colonnes de X,
de sorte que X = (R1 . . . Rk). Sous H0, la matrice des régresseurs utiles
X̄ = (R1 . . . Rq) est la restriction de X à ses q premiers régresseurs. L’effet
moyen Xθ se trouve alors dans l’espace vectoriel V engendré par R1, . . . , Rq,
dont la dimension est q (car R1, . . . , Rq sont linéairement indépendants par
hypothèse). Avec ces notations, le problème de test se réécrit de la manière
suivante :

H0 : Xθ ∈ V contre H1 : Xθ ∈ E \ V.

(On rappelle que E est l’espace vectoriel engendré par les colonnes de X).
Le principe de construction du test est de rejeter H0 lorsque les projec-
tions orthogonales de l’observation Y sur E et sur V sont significative-
ment différentes. Selon ce principe, une région de rejet naturelle est de la
forme {y ∈ Rn : ∥yE − yV∥ > s} avec s un seuil à préciser. Mais la loi de
∥YE −YV∥ dépend du paramètre inconnu σ. En effet, sous H0, YV = Xθ + εV
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car Xθ ∈ V et donc, d’après le théorème de Cochran appliqué au vecteur
gaussien ε,

∥YE − YV∥2 = ∥εE − εV∥2 ∼ σ2χ2(k − q).

Or, le théorème de Cochran montre aussi que sous H0, le vecteur aléatoire
εE − εV = YE −YV est indépendant de ε − εE = Y −YE. Enfin, ∥Y −YE∥2 ∼
σ2χ2(n − k). En réunissant ces observations et en notant pour y ∈ Rn :

F(y) =
∥yE − yV∥2/(k − q)
∥y − yE∥2/(n − k)

,

on trouve F(Y) ∼ F (k − q, n − k) sous H0. Si f (k−q,n−k)
1−α désigne le quantile

d’ordre (1 − α) de la loi F (k − q, n − k) alors, sous H0,

P
(

F(Y) > f (k−q,n−k)
1−α

)
= α.

La région de rejet

RFisher =
{

y ∈ Rn : F(y) > f (k−q,n−k)
1−α

}
nous donne donc un test (dit de Fisher) de niveau (de taille) α pour le
problème de test de H0 contre H1 : on rejette H0 au niveau α si l’observa-
tion Y = (Y1, . . . , Yn)⊺ tombe dans RFisher. Notons que F(y) se calcule très
facilement comme on l’a vu dans la preuve du théorème 19 :

yE = X(X⊺X)−1X⊺y et yV = V(V⊺V)−1V⊺y,

où V est la matrice des q premières colonnes de X.

Régression linéaire simple et prévision. Lorsque

X =


1 x1
1 x2
...

...
1 xn

 ,

et θ = (µ, β)⊺, le modèle s’écrit Yi = µ + βxi + εi pour 1 ≤ i ≤ n, avec
ε1, . . . , εn i.i.d., de loi commune N (0, 1). On parle alors de régression li-
néaire simple.
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On calcule

X⊺X =

(
n ∑ xi

∑ xi ∑ x2
i

)
, (X⊺X)−1 =

1
∑(xi − x̄n)2

(
(1/n)∑ x2

i −x̄n
−x̄n 1

)
X⊺Y =

(
∑ Yi

< Y, x >

)
,

(avec la notation x̄n = 1
n ∑n

i=1 xi) et on obtient (puisque θ̂ = (µ̂, β̂)⊺ =
(X⊺X)−1X⊺Y) tout d’abord que

β̂ =
−x̄n ∑ Yi+ < Y, x >

∑(xi − x̄n)2 =
∑n

i=1(xi − x̄n)(Yi − Ȳn)

∑n
i=1(xi − x̄n)2 .

Par ailleurs,

µ̂ =
(1/n)(∑ x2

i )(∑ Yi)− x̄n < Y, x >

∑(xi − x̄n)2

=
(1/n)(∑ Yi)(∑ x2

i − n(x̄n)2)

∑(xi − x̄n)2 +
(∑ Yi)(x̄n)2 − x̄n < Y, x >

∑(xi − x̄n)2

= Ȳn + x̄n
(∑ Yi)(x̄n)− < Y, x >

∑(xi − x̄n)2

= Ȳn − β̂x̄n.

On obtient également

θ̂ ∼ N2

((
µ

β

)
,

σ2

∑n
i=1(xi − x̄n)2

( 1
n ∑n

i=1 x2
i −x̄n

−x̄n 1

))
. (6.2)

Enfin, la variance est estimée sans biais par

σ̂2 =
1

n − 2

n

∑
i=1

(Yi − µ̂ − β̂xi)
2,

quantité indépendante de θ̂ et telle que (n−2)σ̂2

σ2 ∼ χ2(n − 2).

Lorsque l’on dispose d’une nouvelle observation x⋆ de la variable expli-
cative et que l’on souhaite prédire l’espérance mx⋆ = µ + βx⋆, l’estimateur
obtenu par plug-in est m̂x⋆ = µ̂+ β̂x⋆. Comme (µ̂, β̂) est un vecteur gaussien
de paramètres donnés par (6.2), la variable aléatoire

m̂x⋆ − mx⋆ = µ̂ − µ + x⋆(β̂ − β)
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est aussi gaussienne de moyenne zero et de variance (le calcul demande
quelques lignes)

V(µ̂ − µ) + (x⋆)2V(β̂ − β) + 2x⋆Cov(µ̂ − µ, β̂ − β)

=
σ2

∑(xi − x̄n)2

( 1
n ∑ x2

i + x2 + 2x⋆(−x̄n)
)

= · · ·

= σ2
( 1

n
+

(x⋆ − x̄n)2

∑(xi − x̄n)2

)
.

Par ailleurs σ̂ = 1
n−2 ∑n

i=1(yi − µ̂ − β̂xi)
2 est de loi σ2χ2(n − 2) et indépen-

dante de (µ̂, β̂). En utilisant les résultats ci-dessus, on conclut que

m̂x⋆ − mx⋆

σ̂

√
1
n + (x⋆−x̄n)2

∑n
i=1(xi−x̄n)2

∼ T (n − 2),

d’où l’intervalle de confiance pour la valeur moyenne mx⋆ de niveau (1 −
α) : [

m̂x⋆ ± t(n−2)
1− α

2
σ̂

√
1
n
+

(x⋆ − x̄n)2

∑n
i=1(xi − x̄n)2

]
.

On peut également observer que la projection de ε sur cette nouvelle ob-
servation x⋆ vérifie εx⋆ ∼ N (0, σ2) et est indépendante de Y. Il en découle

m̂x⋆ − (mx⋆ + εx⋆)

σ̂

√
1 + 1

n + (x⋆−x̄n)2

∑n
i=1(xi−x̄n)2

∼ T (n − 2).

On peut donc donner un intervalle de prévision dans lequel la nouvelle
observation Yx⋆ = mx⋆ + εx⋆ appartiendra avec probabilité 1 − α :[

m̂x⋆ ± t(n−2)
1− α

2
σ̂

√
1 +

1
n
+

(x⋆ − x̄n)2

∑n
i=1(xi − x̄n)2

]
.

(Noter l’accroissement de la variance, donc de l’imprécision.)
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